수특에서 배울거리를 정리해보자 미적 11일차
게시글 주소: https://orbi.kr/00057502459
아래는 오늘 문제인 수특 미적 58p Level3 3번입니다.
먼저 풀어보시고 아래 내용 봐주세요.
기본적으로 삼각함수는 대칭성이 중요합니다.
문제에서 나온 사인함수는 선대칭, 점대칭 성질 모두 있습니다.
f(x)는 주기 8인 사인함수죠.
0<t<2일 때 x=2에 대해 대칭임을 생각하면 t1=4-t이고 g(t)=4-2t 입니다.
2≤t<6일 때 x=6에 대해 대칭임을 생가갛면 t1=12-t이고 g(t)=12-2t입니다.
마찬가지로 6≤t<10에서 g(t)=20-2t, ...이 됩니다.
불연속인 지점은 x=2, 6, 10, 14, ... 이 되어 ak=4k-2가 되죠.
ㄱ. a1=2, g(a1)=8이므로 참이고
ㄴ. 불연속 지점에서 함숫값은 8이고 좌극한은 0이므로 참입니다.
ㄷ. {g(루트t)-g(루트 ak)} /{(루트t - 루트 ak)×(루트t + 루트 ak)} 의 극한값은
미분계수 정의를 생각하면 g'(루트 ak)/(2 루트 ak)가 됩니다.
그런데 g가 미분가능한 곳에서 기울기는 항상 -2이므로 g'(루트 ak)=-2이죠.
시그마 안에 있는 식이 ak=4k-2 가 되는 것이죠.
그래서 k=1부터 20까지 (4k-2)의 합을 구하면 200이 되어 참입니다.
사실 여기서 x=루트ak에서 미분가능한지 확인을 해줬어야합니다.
미분 불가능한 지점은 x=2, 6, 10, ...로 4로 나눈 나머지가 2인 지점들입니다.
그런데 ak=4k-2이므로 만약 x=루트ak에서 미분이 불가능하다면
루트(4k-2)=4p+2(4로 나눈 나머지가2)라 쓸 수 있죠.
그러면 4k-2=(4p+2)²=16p²+16p+4가 되어 왼쪽과 달리 오르쪽은 4로 나누어 떨어져 모순입니다.
따라서 x=루트ak 에서 항상 미분이 가능함을 알 수 있습니다.
아래는 관련 기출인 2022년 교육청 4월 30번(미적)입니다.
봐주셔서 감사하고요
도움이 되셨다면 좋아요, 팔로우, 댓글 남겨주시면 큰 힘이 됩니다.
[수특 수1에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00043586953
2일차 https://orbi.kr/00054486743
3일차 https://orbi.kr/00054486856
4일차 https://orbi.kr/00054486909
5일차 https://orbi.kr/00054486964
6일차 https://orbi.kr/00054755049
7일차 https://orbi.kr/00055606627
8일차 https://orbi.kr/00055606695
9일차 https://orbi.kr/00055934554
10일차 https://orbi.kr/00056038091
11일차 https://orbi.kr/00056055480
12일차 https://orbi.kr/00056076859
13일차 https://orbi.kr/00056087931
14일차 https://orbi.kr/00056209161
15일차 https://orbi.kr/00056218374
16일차 https://orbi.kr/00056245358
17일차 https://orbi.kr/00056255150
18일차 https://orbi.kr/00056285424
19일차 https://orbi.kr/00056297739
20일차 https://orbi.kr/00056317870
21일차 https://orbi.kr/00056329144
22일차 https://orbi.kr/00056353975
23일차 https://orbi.kr/00056365299
24일차 https://orbi.kr/00056383119
25일차 https://orbi.kr/00056395643
26일차 https://orbi.kr/00056415172
27일차 https://orbi.kr/00056425159
28일차 https://orbi.kr/00056446414
29일차 https://orbi.kr/00056485619
30일차 https://orbi.kr/00056500731
31일차 https://orbi.kr/00056515335
[수특 수2에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00056604978
2일차 https://orbi.kr/00056619232
3일차 https://orbi.kr/00056634162
4일차 https://orbi.kr/00056647537
5일차 https://orbi.kr/00056661437
6일차 https://orbi.kr/00056683179
7일차 https://orbi.kr/00056698712
8일차 https://orbi.kr/00056711910
9일차 https://orbi.kr/00056726584
10일차 https://orbi.kr/00056740434
11일차 https://orbi.kr/00056755830
12일차 https://orbi.kr/00056772290
13일차 https://orbi.kr/00056785592
14일차 https://orbi.kr/00056801091
15일차 https://orbi.kr/00056815373
16일차 https://orbi.kr/00056828421
17일차 https://orbi.kr/00056841080
18일차 https://orbi.kr/00056856168
19일차 https://orbi.kr/00056871300
20일차 https://orbi.kr/00056879246
21일차 https://orbi.kr/00056899276
22일차 https://orbi.kr/00056913977
23일차 https://orbi.kr/00056933238
24일차 https://orbi.kr/00056948862
25일차 https://orbi.kr/00056962447
26일차 https://orbi.kr/00056971365
27일차 https://orbi.kr/00056989561
28일차 https://orbi.kr/00057010792
29일차 https://orbi.kr/00057024156
30일차 https://orbi.kr/00057033670
31일차 https://orbi.kr/00057057455
32일차 https://orbi.kr/00057073101
33일차 https://orbi.kr/00057102345
34일차 https://orbi.kr/00057107895
35일차 https://orbi.kr/00057123173
36일차 https://orbi.kr/00057138057
37일차 https://orbi.kr/00057155811
[수특 기하에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057171676
2일차 https://orbi.kr/00057187980
3일차 https://orbi.kr/00057237747
4일차https://orbi.kr/00057279483
5일차 https://orbi.kr/00057320616
6일차 https://orbi.kr/00057330993
7일차 https://orbi.kr/00057357893
8일차 https://orbi.kr/00057399746
9일차 https://orbi.kr/00057413958
10일차 https://orbi.kr/00057424362
11일차 https://orbi.kr/00057470295
[수특 확통에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057204678
2일차 https://orbi.kr/00057217666
3일차 https://orbi.kr/00057249365
4일차 https://orbi.kr/00057292834
5일차 https://orbi.kr/00057320639
6일차 https://orbi.kr/00057331030
7일차 https://orbi.kr/00057377907
8일차 https://orbi.kr/00057413252
9일차 https://orbi.kr/00057423867
10일차 https://orbi.kr/00057439622
11일차 https://orbi.kr/00057473543
[수특 미적에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057204715
2일차 https://orbi.kr/00057217693
3일차 https://orbi.kr/00057265476
4일차 https://orbi.kr/00057320586
5일차 https://orbi.kr/00057330915
6일차 https://orbi.kr/00057347254
7일차 https://orbi.kr/00057387349
8일차 https://orbi.kr/00057413693
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
카큘러스님껜 드릴 말이 없습니다..
-
다시 풀 자신없음 계산 개좆같던데
-
아이패두로 글씨는 안이쁘긴함
-
10만원 넘게 삭제
-
개 씨~발 2
작년 25학번 의대입시가 좆꿀통이었네 씨~발 07년생애기들 존나 억울하겠네 개좆같겠다 그냥.
-
강기분 안들으니까 지금 하나도기억안남 현대시 해석 어캐해야함?
-
입니다(케로로 톤으로)
-
지지합니다
-
반수반으로 들어갈 생각인데 컨텐츠(모고나 n제..)거기서 주는 걸로 충분한가요?...
-
경상도인데 꽤
-
사실이면 씨발 닥치고 이재명 찍는다
-
넌 어디까지 가길 원해 잠깐만 둘이 조금 더 멀리
-
간쓸개 꼬라지 3
문제존나병신같네~ 나만그럼?? 내가 현대시를 존나 못해서그런가? 강기분 재수강 해야되나??
-
세이프!! 0
휴
-
22년 대선때 나왔던 공약 또꺼냈네요 선택적 모병제 한다고함... 뭐 말바꾸면 끝이겠지만
-
병신같은 거 2
병신같은 궁금증인거 아는데 다른 사람들 의견도 좀 궁금해서.. 원래 좋아하는 사람...
-
잇올 0
잇올 마포 신촌 지점 다니시는 분 궁금한게 있는데 기숙학원인지라 찾아볼 방법이 없네요..
-
145닙 작단 얘기가 굉장히 많은데요 솔직히 146도 그리 큰 편은 아닌거 같습니다...
-
어떤가요..? 풀만 한가요? 이매진 풀고 있고 추가로 풀려고 하는데 난이도랑 퀄리티...
-
예를들어 불수능 국어에 강한데 불국어로 나오거나 수학은 내가 잘 아는 유형들 위주로...
-
평가원 #~#
-
갑이 너므 멍청함…ㅋㅋㅋㅋㅋ
-
몇명은 재미로 이름을 바꿔봤습니다
-
누가 성공했다거나 고득점을 얻었다 이러면 그만큼 열심히 했겠지 라고 말씀함 실제론...
-
3058 6
.
-
수학이 마렵네요
-
의반한테 개쳐맞긴 싫은데 동결한다고 복귀를 할까
-
속쓰려 4
약 잘못삼켜서 긁고 내려가는건가..
-
1차원에선 2차원 방향으로 중력이 작용 2차원에선 3차원 방향으로 중력이 작용 그럼...
-
증원롤백되면 0
의주빈들 분탕 안치려나
-
그냥 우영호샘 듣는게 나음?
-
2026학년도 의대 모집 정원 3058명 확정 : 네이버 블로그
-
내 흥미는 이거야
-
ㅈㄴ 맛있네요 근데 비빔면은 항상 느끼는건데 양이 너무 적게 느껴짐
-
체대 때도 반에 박혀서 폰만 하는 나에게 회의감이 들었는데 0
개꿀잼 농구 경기를 보니까 마음이 풀림 그냥 즐겨야지
-
2026학년도 의대 모집인원 '3천58명'…증원 이전 규모로 확정 3
40개 의대생 전원 등록했지만 수업참여율 26%…"의대교육 정상화 위해 결단"...
-
정원 확정났네요 3
동결로
-
첫 맛은 일반 펩시랑 크게 다르진 않은데 끝에 약간 풀맛? 민트향이 은근하게 나는...
-
나 초딩때부터 했으니까… 시간이 많이 흘렀네요
-
둘다 5로 찍었는데 1번이라니 ㅠㅠ
-
EBS 배경지식 교재의 시대를 열었던 이배이 시리즈입니다. 저희는 올해도 출판...
-
초반에는 저조한 참여율 때문에 많이 걱정했지만, 총 열 분께서 참가해 주셔서 다행히...
-
잠깸
-
8모(2022,2027~) 8모 5년만에 부활
-
배 아퍼 4
크악
-
더프수학 0
18 19틀렷는데 ㅇㄱㅈㅉㅇㅇ?
-
댓글 달아주시면 만년필로 닉네임 정자체로 적어드려요 17
많은 참여 부탁드림뇨
-
9,10 ㅋㅋㅋㅋㅋ
-
그렇게 했는데 나는 왜 안 나왔지
11일차 클리어!
풀다가 정신 나갈뻔 했는데 굉장히 깔끔하게 푸시는군요..
삼각함수 대칭성 -> 중간이 평균이니까, 합이 일정함을 이용해서 슥슥 좌표 쓰기
예) 중간이 2라면, x좌표는 t와 4-t
미분계수 형태 -> 분자와 분모의 형태를 맞추고, 미분가능할 경우 프라임으로 미분계수로 쓰기. 굳이 치환 필요 x.
변수 t로 새롭게 정의된 함수 -> 대강 예측이 아니라, 그래프를 그릴줄 알아야함.
정리가 훌륭햐십니다 삼각함수는 대칭성!