수특에서 배울거리를 정리해보자 수2 18일차
게시글 주소: https://orbi.kr/00056856168
아래는 오늘 문제인 수특 수2 57p Level3 5번입니다.
먼저 풀어보시고 아래 내용 봐주세요.
f(x)가 미분가능할 때 평균값 정리, 연속일 때 사잇값 정리를 사용할 수 있죠.
사잇값 정리는 f(x)=0의 실근의 존재성을 보일 때 자주 사용되고
평균값 정리는 f'(x)=0의 실근의 존재성을 보일 때 자주 사용됩니다.
그런데 f(x)가 다항함수인 경우에는 f'(x)가 연속이 되죠.
그러면 f'(x)=0의 실근의 존재성을 보이기 위해 f(x)에 평균값 정리를 적용해볼 수 있고 f'(x)에 사잇값 정리를 적용해볼 수도 있는 것입니다. 둘 중에 무엇이 문제 상황에 적합할 지는 그때 그때 달라지겠죠. 하나를 시도해보고 잘 안되면 나머지 하나를 빠르게 떠올려서 써보아야 합니다.
오늘 문제를 풀어 볼게요.
ㄱ. -1<a<0
구간 [-1, 1]에서 f(x)에 대해 평균값 정리 쓰면 f'(b)<0인 b이 -1과 1 사이에 존재하고
구간 [1, 2]에서 f(x)에 대해 평균값 정리 쓰면 f'(c)>0인 c이 1과 2 사이에 존재합니다.
구간 [b, c]에서 f'(x)에 대해 사잇값 정리 쓰면 f'(x)=0인 x가 b와 c 사이에 존재합니다.
그런데 f'(x)=0의 실근이 x=a 뿐이므로 a는 b와 c 사이에 존재하고 b, c 모두 -1과 2 사이에 존재하므로 a는 -1과 2 사이에 있게 됩니다. (참)
ㄴ. |g'(c)|=5를 만족하는 c가 (-1, 2)에 적어도 2개 존재한다.
g(x)=(x²+1)f(x)이므로 g(-1)=10, g(1)=0, g(2)=5가 됩니다.
g(x)에 대해 평균값 정리 써볼게요.
구간 [-1, 1]에서 g(x)에 대해 평균값 정리 쓰면 g'(b)=-5인 b가 -1과 1 사이에 존재하고
구간 [1, 2]에서 g(x)에 대해 평균값 정리 쓰면 g'(c)=5인 c가 1과 2 사이에 존재합니다.
따라서 -1과 2 사이에서 |g'(x)|=5인 x값은 적어도 2개(b와 c) 존재합니다. (참)
ㄷ. a>1이면 g(x)가 극소가 되는 x가 0과 2 사이에 존재한다.
이번에는 g'(x)에 대해 사잇값 정리를 써볼게요.
g'(x)=2xf(x)+(x²+1)f'(x)이고 이는 연속이라 사잇값 정리 쓸 수 있습니다.
g'(0)=f'(0)이고 g'(2)=4f(2)+5f'(2)=4+5f'(2)입니다. 이 값의 부호가 궁금한 것이죠.
여기서 f'(x)=0의 실근이 x=a로 유일하므로 x<a에서는 f'(x)<0, x>a에서는 f'(x)>0 임을 알 수 있습니다.
그런데 a>1이라고 했으므로 ㄱ에서 알아낸 -1<a<2를 동시에 만족하려면 1<a<2임을 알 수 있죠.
따라서 f'(0)<0, f'(2)>0이 됩니다.
그러면 g'(0)=f'(0)<0이고 g'(2)=4+5f'(2)>0이 되어 부호 변화가 됩니다.
따라서 0과 2 사이에 g'(x)=0인 x가 존재합니다. (참)
아래는 관련 기출인 2017학년도 수능 가형 20번입니다.(미적분 문제)
봐주셔서 감사하고요
도움이 되셨다면 좋아요, 팔로우, 댓글 남겨주시면 큰 힘이 됩니다.
[수특 수1에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00043586953
2일차 https://orbi.kr/00054486743
3일차 https://orbi.kr/00054486856
4일차 https://orbi.kr/00054486909
5일차 https://orbi.kr/00054486964
6일차 https://orbi.kr/00054755049
7일차 https://orbi.kr/00055606627
8일차 https://orbi.kr/00055606695
9일차 https://orbi.kr/00055934554
10일차 https://orbi.kr/00056038091
11일차 https://orbi.kr/00056055480
12일차 https://orbi.kr/00056076859
13일차 https://orbi.kr/00056087931
14일차 https://orbi.kr/00056209161
15일차 https://orbi.kr/00056218374
16일차 https://orbi.kr/00056245358
17일차 https://orbi.kr/00056255150
18일차 https://orbi.kr/00056285424
19일차 https://orbi.kr/00056297739
20일차 https://orbi.kr/00056317870
21일차 https://orbi.kr/00056329144
22일차 https://orbi.kr/00056353975
23일차 https://orbi.kr/00056365299
24일차 https://orbi.kr/00056383119
25일차 https://orbi.kr/00056395643
26일차 https://orbi.kr/00056415172
27일차 https://orbi.kr/00056425159
28일차 https://orbi.kr/00056446414
29일차 https://orbi.kr/00056485619
30일차 https://orbi.kr/00056500731
31일차 https://orbi.kr/00056515335
[수특 수2에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00056604978
2일차 https://orbi.kr/00056619232
3일차 https://orbi.kr/00056634162
4일차 https://orbi.kr/00056647537
5일차 https://orbi.kr/00056661437
6일차 https://orbi.kr/00056683179
7일차 https://orbi.kr/00056698712
8일차 https://orbi.kr/00056711910
9일차 https://orbi.kr/00056726584
10일차 https://orbi.kr/00056740434
11일차 https://orbi.kr/00056755830
12일차 https://orbi.kr/00056772290
13일차 https://orbi.kr/00056785592
14일차 https://orbi.kr/00056801091
16일차 https://orbi.kr/00056815373
17일차 https://orbi.kr/00056828421
18일차 https://orbi.kr/00056841080
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기하 마려워짐 이라고 말할줄알았냐?
-
성대 인과계 0
645.3 추합 ㄱㄴ?
-
어떤 걸 받아가라 한다 내가 해봤는데 안됐다고 사기라고 한다 옆에 있는 직원한테...
-
돌고도는 2
물레방아
-
하…
-
제발 ㅠㅠ
-
지랭이
-
레전드 인생
-
감귤맛 요플레+블루베리. 감귤향이 은은하게 나면서 블루베리의 톡톡 터지는 식감 +...
-
앙망
-
이거 어떻게 쌓고 어디다 써먹을 수 있나용
-
이번에 더 좋은 대학에 가기 위한 도약일뿐 한양대 논술 기억하고 있겠다
-
붙여주세요 ㅜㅜ
-
-1등급, 받아들일 수 없는 2등급은 풀 필요 없음.—>바로 4규 시즌1으로…....
-
수학만잘봤으면 0
에휴 작년보다 훨씬 잘볼줄 알았지만 작년보다 훨씬 쳐망했네 수학만 잘봤으면 성대는 됐을텐데
-
국어를 잘하기 위해선 '뇌'를 키워야 합니다. 국어 실력과 독해 실력을 향상시키기...
-
앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙...
-
난 과탐을 해봤어요!!
-
2점인가 3점인가 몰?루
-
메가 환급 조건 0
모의,수능 다 입력했었고 모의지원도 다 했는데요 합격한 학교의 합격증만 가지고...
-
실권이있는건아니라도 옯당도 만들고 걍 지역구 옯회의원하나씩 뽑고 지역별로 당협위원장도 있고
-
시대컨 플로우 숏컷 전 숏컷 난도가 개애애애높아서 플로우를 더 좋아하긴함 둘 다...
-
나같은사람있음? 11
+1결과 국어수학 다 떨어짐 ㅁㅌㅊ?
-
점공 6명 남았는데 4등이 508이네요 추합 생각하면 504로 써볼만도 했나 싶어서 아쉽..
-
에휴다노...
-
??
-
메가 숭배하라 5
ㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅ진짜 찬양함 대 메 가 아니...
-
이런거 풀려면 입체도형 특징 다 외우고 있어야해요? 수능특강엔 입체도형 종류도 안알려주던데 ㅜ
-
22도 멸종위기종인데 19는 없어야만함...
-
내일들어오겠지만 ㅈㄴ빡치네..ㅠㅠ
-
샴푸와 바디워시로 인한 환경오염이 줄어듦
-
덕코좀주세요 0
저 닉변하고싶음..
-
ㅇㅇ
-
올해느꼈다
-
화학을 해본적이 없어서.. 화1 화2에서 원자구조, 금속의 반응성, 전기과학 이...
-
전 -20°C (강원도에서 스키 탈 때) 43°C (미국 데스밸리)
-
몇점이 나오든 3년 내내 고려대 갈거라고 떠들고 다녔었는데 쩝
-
나 제주의 보내면 반수하러 26 때 또 온다?♡
-
점공 안 하는 사람들은 어떤 부류인가요? 성격말고 성적이나 입시적으로요!! 혹은...
-
진학사 점공으로 들어오십시오!!!!
-
뭐지??
-
그때나 지금이나 현실은
-
호소인이었는데 다들 까리하노..
-
수능 끝나고 진로에 대해서 나름..?고민해보는게 좋았음 5
현직에 있으신 분들함테 많이 얘기 듣고 커뮤에서는 어케 생각하나 물어보고 적어도...
-
애니 계속 보다보니까 알게된건데 나 갸루파였음
-
수1 자작문제 1
-
왜 중고딩 때 온라인 게임 가급적이면 못하게 했는지 1
나이 먹고 신문이랑 뉴스 보면서 느끼는 거지만 인터넷 상에서 벌어지는 게...
-
재수땐 지방수호소인
댓글 감사합니다
봐주신다니 큰 힘이 되네요 댓글 감사합니다
18일차 클리어!
평균값 정리 구간 별로 쪼개기
다항함수 / f'(x)근 1개 / 감소하다 증가 -> 이차함수
그러나 식을 구할 수 있어도 단순 연립 방정식이라면
굳이 이걸 다 구해야하나..? 멈칫
-> 실제로 구할 필요가 없었음.(출제 의도)