수특에서 배울거리를 정리해보자 미적 8일차
게시글 주소: https://orbi.kr/00057413693
아래는 오늘 문제인 수특 미적 56p Level2 4번입니다.
먼저 풀어보시고 아래 내용 봐주세요.
함수 f(x)가 미분가능한 함수일 때 |f(x)|가 미분가능하기 위한 조건을 생각해봅시다.
결론 먼저 : f(a)=0인데 x=a에서 |f(x)|가 미분 가능하려면 f'(a)=0
f(x)가 x축과 만나지 않는다면 |f(x)|는 f(x)와 완전히 같으므로(또는 -f(x)와 완전히 같으므로) 그대로 미분가능합니다.
f(x)가 x축과 만날 때는 |f(x)| 그래프는 x축 기준으로 접어올리는 것인데 접어올릴 때 뾰족한 점이 생기며 미분이 가능하지 않을 수 있습니다.
f(x)가 x=a에서 x축과 만난다고하면 f(a)=0이겠죠. 이때 f'(a)=0임을 두가지로 설명해볼게요.
① 직관적으로 f'(a)=m이였다면 x=a에서 접어올릴 때 x=a 좌우에서 기울기가 ±m이 되며 뾰족한 점이 되는데 뾰족하지 않으려면 f'(a)=0이였어야 합니다.
② f(x)가 다항함수인 경우에 미분계수 정의로 설명해보면, f(a)=0이면 f(x)=(x-a)g(x)라 할 수 있고
|f(x)|의 평균변화율은 |f(x)-f(a)|/(x-a) = |x-a||g(x)|/(x-a) 입니다.
x→a+일 때 순간변화율은 |x-a|=x-a이므로 |g(a)|이고
x→a- 일 때 순간변화율은 |x-a|=-(x-a)이므로 -|g(a)|입니다. 이 값이 서로 같아야하므로 g(a)=0이고
f(x)는 (x-a) 인수가 두개 이상이 되어 f'(a)=0이 되죠.
③ f(x)가 그냥 미분가능한 함수일 때 미분계수 정의로 설명해볼게요.
f(a)=0인데 f'(a)≠0이라면 x=a에서 f(x)의 부호가 변하게 됩니다. (-)에서 (+)로 바뀐다고 해볼게요.
즉, x=a 근처에서 x<a이면 f(x)<0, x>a이면 f(x)>0
그러면 |f(x)|의 평균변화율은 |f(x)-f(a)|/(x-a) = |f(x)|/(x-a) 입니다.
x→a+일 때 순간변화율은 |f(x)|=f(x)이므로 f(x)/(x-a)→f'(a)이고
x→a- 일 때 순간변화율은 |f(x)|=-f(x)이므로 -f(x)/(x-a)→-f'(a)입니다. 이 값이 서로 같아야하므로 f'(a)=0입니다.
가정에 모순이 되네요. 결국 f'(a)=0이어야 함을 알 수 있습니다.
오늘 문제를 볼게요.
통채로 절댓값이 아니라 절댓값 |tanx-1|에 일차함수 (x-a)를 곱했지만 원리는 비슷합니다.
tanx -1 =h(x)라 하면 f(x)=(x-a)|h(x)|라 할 수 있는데 h(π/4)=0이지만 h'(π/4)≠0이므로
x=π/4에서 미분가능하려면 곱해져있는 (x-a)에 x=π/4를 대입했을 때 0이 되어야 함을 짐작할 수 있겠죠.
교과서적으로 미분계수 정의를 이용해서 설명해볼게요.
g(x)=(x-a)(tanx-1)라 하면
x≥π/4일 때 f(x)=g(x)이므로 평균변화율은 (g(x)-g(π/4))/(x-π/4)=g(x)/(x-π/4),
x<π/4일 때 f(x)=-g(x)이므로 평균변화율은 (-g(x)-g(π/4))/(x-π/4)=-g(x)/(x-π/4)이 됩니다.
서로 부호만 반대인게 보이죠?
x→π/4+ 순간변화율은 g'(π/4),
x→π/4- 순간변화율은 -g'(π/4)이므로 서로 같으려면 g'(π/4)=0입니다.
따라서 결국 처음 예상처럼 a=π/4이 되구요
구하는 값은 대입하여 계산해주면 정답으로 π+2를 구할 수 있습니다.
아래는 관련 기출인 2021학년도 수능 28번(가형)입니다.
봐주셔서 감사하고요
도움이 되셨다면 좋아요, 팔로우, 댓글 남겨주시면 큰 힘이 됩니다.
[수특 수1에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00043586953
2일차 https://orbi.kr/00054486743
3일차 https://orbi.kr/00054486856
4일차 https://orbi.kr/00054486909
5일차 https://orbi.kr/00054486964
6일차 https://orbi.kr/00054755049
7일차 https://orbi.kr/00055606627
8일차 https://orbi.kr/00055606695
9일차 https://orbi.kr/00055934554
10일차 https://orbi.kr/00056038091
11일차 https://orbi.kr/00056055480
12일차 https://orbi.kr/00056076859
13일차 https://orbi.kr/00056087931
14일차 https://orbi.kr/00056209161
15일차 https://orbi.kr/00056218374
16일차 https://orbi.kr/00056245358
17일차 https://orbi.kr/00056255150
18일차 https://orbi.kr/00056285424
19일차 https://orbi.kr/00056297739
20일차 https://orbi.kr/00056317870
21일차 https://orbi.kr/00056329144
22일차 https://orbi.kr/00056353975
23일차 https://orbi.kr/00056365299
24일차 https://orbi.kr/00056383119
25일차 https://orbi.kr/00056395643
26일차 https://orbi.kr/00056415172
27일차 https://orbi.kr/00056425159
28일차 https://orbi.kr/00056446414
29일차 https://orbi.kr/00056485619
30일차 https://orbi.kr/00056500731
31일차 https://orbi.kr/00056515335
[수특 수2에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00056604978
2일차 https://orbi.kr/00056619232
3일차 https://orbi.kr/00056634162
4일차 https://orbi.kr/00056647537
5일차 https://orbi.kr/00056661437
6일차 https://orbi.kr/00056683179
7일차 https://orbi.kr/00056698712
8일차 https://orbi.kr/00056711910
9일차 https://orbi.kr/00056726584
10일차 https://orbi.kr/00056740434
11일차 https://orbi.kr/00056755830
12일차 https://orbi.kr/00056772290
13일차 https://orbi.kr/00056785592
14일차 https://orbi.kr/00056801091
15일차 https://orbi.kr/00056815373
16일차 https://orbi.kr/00056828421
17일차 https://orbi.kr/00056841080
18일차 https://orbi.kr/00056856168
19일차 https://orbi.kr/00056871300
20일차 https://orbi.kr/00056879246
21일차 https://orbi.kr/00056899276
22일차 https://orbi.kr/00056913977
23일차 https://orbi.kr/00056933238
24일차 https://orbi.kr/00056948862
25일차 https://orbi.kr/00056962447
26일차 https://orbi.kr/00056971365
27일차 https://orbi.kr/00056989561
28일차 https://orbi.kr/00057010792
29일차 https://orbi.kr/00057024156
30일차 https://orbi.kr/00057033670
31일차 https://orbi.kr/00057057455
32일차 https://orbi.kr/00057073101
33일차 https://orbi.kr/00057102345
34일차 https://orbi.kr/00057107895
35일차 https://orbi.kr/00057123173
36일차 https://orbi.kr/00057138057
37일차 https://orbi.kr/00057155811
[수특 기하에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057171676
2일차 https://orbi.kr/00057187980
3일차 https://orbi.kr/00057237747
4일차https://orbi.kr/00057279483
5일차 https://orbi.kr/00057320616
6일차 https://orbi.kr/00057330993
7일차 https://orbi.kr/00057357893
8일차 https://orbi.kr/00057399746
[수특 확통에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057204678
2일차 https://orbi.kr/00057217666
3일차 https://orbi.kr/00057249365
4일차 https://orbi.kr/00057292834
5일차 https://orbi.kr/00057320639
6일차 https://orbi.kr/00057331030
7일차 https://orbi.kr/00057377907
8일차 https://orbi.kr/00057413252
[수특 미적에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057204715
2일차 https://orbi.kr/00057217693
3일차 https://orbi.kr/00057265476
4일차 https://orbi.kr/00057320586
5일차 https://orbi.kr/00057330915
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
카큘러스님껜 드릴 말이 없습니다..
-
다시 풀 자신없음 계산 개좆같던데
-
아이패두로 글씨는 안이쁘긴함
-
10만원 넘게 삭제
-
개 씨~발 2
작년 25학번 의대입시가 좆꿀통이었네 씨~발 07년생애기들 존나 억울하겠네 개좆같겠다 그냥.
-
강기분 안들으니까 지금 하나도기억안남 현대시 해석 어캐해야함?
-
입니다(케로로 톤으로)
-
지지합니다
-
반수반으로 들어갈 생각인데 컨텐츠(모고나 n제..)거기서 주는 걸로 충분한가요?...
-
경상도인데 꽤
-
사실이면 씨발 닥치고 이재명 찍는다
-
넌 어디까지 가길 원해 잠깐만 둘이 조금 더 멀리
-
간쓸개 꼬라지 3
문제존나병신같네~ 나만그럼?? 내가 현대시를 존나 못해서그런가? 강기분 재수강 해야되나??
-
세이프!! 0
휴
-
22년 대선때 나왔던 공약 또꺼냈네요 선택적 모병제 한다고함... 뭐 말바꾸면 끝이겠지만
-
병신같은 거 2
병신같은 궁금증인거 아는데 다른 사람들 의견도 좀 궁금해서.. 원래 좋아하는 사람...
-
잇올 0
잇올 마포 신촌 지점 다니시는 분 궁금한게 있는데 기숙학원인지라 찾아볼 방법이 없네요..
-
145닙 작단 얘기가 굉장히 많은데요 솔직히 146도 그리 큰 편은 아닌거 같습니다...
-
어떤가요..? 풀만 한가요? 이매진 풀고 있고 추가로 풀려고 하는데 난이도랑 퀄리티...
-
예를들어 불수능 국어에 강한데 불국어로 나오거나 수학은 내가 잘 아는 유형들 위주로...
-
평가원 #~#
-
갑이 너므 멍청함…ㅋㅋㅋㅋㅋ
-
몇명은 재미로 이름을 바꿔봤습니다
-
누가 성공했다거나 고득점을 얻었다 이러면 그만큼 열심히 했겠지 라고 말씀함 실제론...
-
3058 6
.
-
수학이 마렵네요
-
의반한테 개쳐맞긴 싫은데 동결한다고 복귀를 할까
-
속쓰려 4
약 잘못삼켜서 긁고 내려가는건가..
-
1차원에선 2차원 방향으로 중력이 작용 2차원에선 3차원 방향으로 중력이 작용 그럼...
-
증원롤백되면 0
의주빈들 분탕 안치려나
-
그냥 우영호샘 듣는게 나음?
-
2026학년도 의대 모집 정원 3058명 확정 : 네이버 블로그
-
내 흥미는 이거야
-
ㅈㄴ 맛있네요 근데 비빔면은 항상 느끼는건데 양이 너무 적게 느껴짐
-
체대 때도 반에 박혀서 폰만 하는 나에게 회의감이 들었는데 0
개꿀잼 농구 경기를 보니까 마음이 풀림 그냥 즐겨야지
-
2026학년도 의대 모집인원 '3천58명'…증원 이전 규모로 확정 3
40개 의대생 전원 등록했지만 수업참여율 26%…"의대교육 정상화 위해 결단"...
-
정원 확정났네요 3
동결로
-
첫 맛은 일반 펩시랑 크게 다르진 않은데 끝에 약간 풀맛? 민트향이 은근하게 나는...
-
나 초딩때부터 했으니까… 시간이 많이 흘렀네요
-
둘다 5로 찍었는데 1번이라니 ㅠㅠ
-
EBS 배경지식 교재의 시대를 열었던 이배이 시리즈입니다. 저희는 올해도 출판...
-
초반에는 저조한 참여율 때문에 많이 걱정했지만, 총 열 분께서 참가해 주셔서 다행히...
-
잠깸
-
8모(2022,2027~) 8모 5년만에 부활
-
배 아퍼 4
크악
-
더프수학 0
18 19틀렷는데 ㅇㄱㅈㅉㅇㅇ?
-
댓글 달아주시면 만년필로 닉네임 정자체로 적어드려요 17
많은 참여 부탁드림뇨
-
9,10 ㅋㅋㅋㅋㅋ
-
그렇게 했는데 나는 왜 안 나왔지
미적 8일차 클리어!!
수렴첨점 × 인수 1개 -> 미분가능
미분계수가 0이 되어 접하기 때문! (착해짐)
착해짐ㅋㅋㅋ 맞습니다