수특에서 배울거리를 정리해보자 미적 3일차
게시글 주소: https://orbi.kr/00057265476
아래는 오늘 문제인 수특 미적 33p 예제 3번입니다.
먼저 풀어보시고 아래 내용 봐주세요.
이 문제에서 배울 거리가 많습니다.
① 지름에 대한 원주각이 나오면 바로 직각 표시하기
② 직각삼각형 나오면 직각 꼭짓점에서 수선 내려서 3개의 직각 삼각형 닮음 이용하기(소자 공식)
③ 이등변삼각형, 수직이등분선 중 하나의 표현 나오면 다른 하나 떠올리기
④ 원은 중심에서 긋는 보조선들이 중요
⑤ 하나의 각을 두 각의 합이나 차로 표현하기
오늘 문제 풀어볼게요.
AE=DE인 이등변삼각형이므로 E에서 수선을 내리면 AD를 이등분하여 길이가 4/5씩 됩니다.
각CAD를 α라 하고, 각EDA를 β라 하면 우리가 구하는 각 CFD는 삼각형 ADF에서 외각이므로
구하는 각은 α+β임을 알 수 있습니다.
이때 지름 AB에 대한 원주각인 각 C는 90도입니다.
따라서 ABC는 직각삼각형이고 AD=8/5, DB=2/5이므로 직각 삼각형의 닮음을 생각하면 CD의 길이는 등비중항인 4/5가 됩니다.
이때 각 BCD도 α가 되는데 밑변과 높이가 2:1이므로 sinα=1/루트5, cosα=2/루트5임을 알 수 있습니다.
α에 대한 정보가 나왔으니 β에 대해 알아볼게요.
E에서 AB에 내린 수선의 발을 H라 하면, OA=1(반지름길이)이고 AH=4/5이므로 HO=1/5입니다.
그런데 OE는 반지름 길이 1이므로 삼각형 EHO는 빗변:밑변이 5:1입니다.
따라서 높이는 2루트6/5가 됩니다.
이제 삼각형 EHD에서 높이는 2루트6/5, 밑변은 HD=4/5이므로 높이와 밑변이 루트3:루트2입니다.
그러면 높이:밑변:빗변 비율이 루트3:루트2:루트5가 되므로 sinβ=루트3/루트5, cosβ=루트2/루트5가 됩니다.
우리가 구하는 각은 α+β니까, sin(α+β)=sinαcosβ+cosαsinβ=1/5루트2 + 2/5 루트3입니다.
따라서 정답은 3이 됩니다.
봐주셔서 감사하고요
도움이 되셨다면 좋아요, 팔로우, 댓글 남겨주시면 큰 힘이 됩니다.
[수특 수1에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00043586953
2일차 https://orbi.kr/00054486743
3일차 https://orbi.kr/00054486856
4일차 https://orbi.kr/00054486909
5일차 https://orbi.kr/00054486964
6일차 https://orbi.kr/00054755049
7일차 https://orbi.kr/00055606627
8일차 https://orbi.kr/00055606695
9일차 https://orbi.kr/00055934554
10일차 https://orbi.kr/00056038091
11일차 https://orbi.kr/00056055480
12일차 https://orbi.kr/00056076859
13일차 https://orbi.kr/00056087931
14일차 https://orbi.kr/00056209161
15일차 https://orbi.kr/00056218374
16일차 https://orbi.kr/00056245358
17일차 https://orbi.kr/00056255150
18일차 https://orbi.kr/00056285424
19일차 https://orbi.kr/00056297739
20일차 https://orbi.kr/00056317870
21일차 https://orbi.kr/00056329144
22일차 https://orbi.kr/00056353975
23일차 https://orbi.kr/00056365299
24일차 https://orbi.kr/00056383119
25일차 https://orbi.kr/00056395643
26일차 https://orbi.kr/00056415172
27일차 https://orbi.kr/00056425159
28일차 https://orbi.kr/00056446414
29일차 https://orbi.kr/00056485619
30일차 https://orbi.kr/00056500731
31일차 https://orbi.kr/00056515335
[수특 수2에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00056604978
2일차 https://orbi.kr/00056619232
3일차 https://orbi.kr/00056634162
4일차 https://orbi.kr/00056647537
5일차 https://orbi.kr/00056661437
6일차 https://orbi.kr/00056683179
7일차 https://orbi.kr/00056698712
8일차 https://orbi.kr/00056711910
9일차 https://orbi.kr/00056726584
10일차 https://orbi.kr/00056740434
11일차 https://orbi.kr/00056755830
12일차 https://orbi.kr/00056772290
13일차 https://orbi.kr/00056785592
14일차 https://orbi.kr/00056801091
15일차 https://orbi.kr/00056815373
16일차 https://orbi.kr/00056828421
17일차 https://orbi.kr/00056841080
18일차 https://orbi.kr/00056856168
19일차 https://orbi.kr/00056871300
20일차 https://orbi.kr/00056879246
21일차 https://orbi.kr/00056899276
22일차 https://orbi.kr/00056913977
23일차 https://orbi.kr/00056933238
24일차 https://orbi.kr/00056948862
25일차 https://orbi.kr/00056962447
26일차 https://orbi.kr/00056971365
27일차 https://orbi.kr/00056989561
28일차 https://orbi.kr/00057010792
29일차 https://orbi.kr/00057024156
30일차 https://orbi.kr/00057033670
31일차 https://orbi.kr/00057057455
32일차 https://orbi.kr/00057073101
33일차 https://orbi.kr/00057102345
34일차 https://orbi.kr/00057107895
35일차 https://orbi.kr/00057123173
36일차 https://orbi.kr/00057138057
37일차 https://orbi.kr/00057155811
[수특 기하에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057171676
2일차 https://orbi.kr/00057187980
3일차 https://orbi.kr/00057237747
[수특 확통에서 배울거리를 정리해보자]
1일차 https://orbi.kr/00057204678
2일차 https://orbi.kr/00057217666
3일차 https://orbi.kr/00057249365
[수특 미적에서 배울거리를 정리해보자]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
괜찮지 않음? 매일 샤워한다는 사람들은 이해가 안됨...
잘 보고 있어요 선생님!
봐주셔서 감사합니다
3일차 클리어! (틀림)
29번 제외 미적에서 수1같은 도형이 나왔다면, 덧셈정리를 물어볼 것으로 예측.
그렇다면, 물어보는 각도를 어떻게 표현할지가 중요한데,
이미 알려진 직각삼각형의 각으로 나타내려는 노력이 중요하다.
+원 위의 점 -> 원의 중심까지 연결이 key