[칼럼][ebs] 오히려 많이 알면 독이 되는 문제.
게시글 주소: https://orbi.kr/00073153044
이대은T_오르비업로드용_2026학년도_수학_5월_교육청_문제_노트정리본.pdf
안녕하세요
이대은입니다.
오늘은 글 제목 그대로
수능특강에 있는 문제 중
수학2에서 재밌는 문제를 하나 보여드리겠습니다.
문제의 난이도가 어려워서 보여드리는 건 아니니
꼭 읽어보시고 도움을 받으셨으면 좋겠네요. :D
바로 문제부터 보여드릴게요.
이 문제는
미적분 선택자는 무난하게 맞출 문제지만
미적분 지식을 사용하지 않고
풀려고 하면 당황하기 좋은 문제입니다.
아 그리고
5월 모의고사 행동강령 정리집도 올려드릴테니
필요하신 분은 꼭 보시길 추천드릴게요 :D
바로 시작해볼게요.
1. 조건해석은 정말 무난하다
주어진 조건을 보시면
어디서나 흔하게 볼 수 있는 조건들이고
점과 점 사이의 거리공식도
아마 모든 수험생이 아는 공식이라 생각합니다.
따라서
는 아마 구하셨을 겁니다.
그럼 이제 문제에서 요구하는
만 구하면 됩니다.
2. 여기서 생기는 문제점
우선 미적분을 선택하지 않은 학생이라면
다항함수가 어떤 함수인지도 모르니
미분계수를 구하는 것 자체가 당황스러울 수 있습니다.
그래서
조건에서 다항함수를 특정하여 구할 수 있는 방법을
떠올리려 남은 조건을 더 해석하려 시도할 가능성이 높습니다.
하지만
문제엔 다항함수란 말만 있고,
몇 차함수인지, 상수항이 0인 것 외엔 딱히 조건이 없습니다.
수업에서 항상 말하지만
안 되는 걸 하려고 시험 도중에 시간을 쏟는 건 완전 낭비다.
를 체감하기 좋은 문제입니다.
이 문제는 다항함수를 직접 구하려는 노력을 포기해야 합니다.
3. 미적분 선택자는
위에서 구한 항등식
을 정리하면
입니다.
일단 앞에서도 말했지만
이 문제는 수특 수학2에서 나온 문제입니다.
공식적으로 미적분을 선택하지 않은 학생은
무리함수에 대한 미분법을 모릅니다.
미적분 선택자는 신나서
를 이용해 t=0을 대입하여 쉽게 답을 구할 순 있지만
이건 수학2 문제니까 수학2 입장에서 설명하겠습니다.
'대치동 암흑스킬'라고 알려져 있는 공식들을
쓰는 건 개인의 자유지만
요즘엔 딱히 몰라도 손해가 아닌 문제들만 출제가 되기도 하니
기본 개념을 이용한 풀이를 소개하겠습니다.
제 생각엔
개념은 알지만 사용하는 학생은 매우 적을 겁니다.
4. 정석적인 풀이
대부분의 학생들은 미분계수를 구할 때
주어진 함수의 도함수를 구해서 x에 대입하여
미분계수를 구합니다.
그런데 이 문제의 경우
미적분을 선택하지 않은 학생들은
의 도함수를 구하는 방법을 모른다는 것이죠.
만약 이 문제를 연계하여 출제한다면
미적분 선택자들도 도함수를 구하지 못하거나,
구하더라도 답을 구할 순 없게 출제할 거라 생각합니다.
이런 경우 미분계수를 구하는 뻔한 방법이 있습니다.
이미 알고 있을 미분계수의 정의
를 이용하는 겁니다.
이 문제의 함수에도 미분계수의 정의를 사용해보면
이므로
을 이용해 쉽게 구할 수 있습니다.
이렇게 미분계수의 정의를 이용하면
미적분 선택자들도 이런 함수의 도함수를 직접 구하는 것보다
훨씬 빠르게 답을 구할 수 있게 됩니다.
오늘 글은 여기까지입니다.
사실 수학에서 연계라는 게 정말 애매하죠.
ebs를 풀지 않아도
대부분의 유형들은 이미 기출문제집에 있습니다.
그래도 정부가 정한
연계교재를 무시하긴 아쉬우니
ebs는 지금처럼 생소한 표현 등을
미리 경험하는 용도로 여기시면 됩니다.
제가 또 재밌는 문제를 들고 올테니
좋아요, 팔로우, 댓글
해주시면 정말 감사하겠습니다!
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
[칼럼] 예고했던 그 글
[칼럼] ebs 미적분 재밌는 문제 하나 보여드림
5월 모의고사 총평
*혹시 몰라 올리는 공통 5월 수학 해설강의입니다
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 하루에 3시간 4시간 자는 것도 나쁘지 않은거같음 5
사실 나쁨
-
인강민철은 왜 1
연계 반영을 안하나 김승리유대종 시중에 파는 월간지들은 다 연계반영지문인데 이러면...
-
뭔글인지기억도안나는데 나 너무무서움
-
뭐냐 저 미친놈 11
차단해서 몰랐는데 광기였네 본인 행동이 비상식적인데 공정과 상식 이러고있음
-
이 분이 올린 게시물을 하루빨리 신고해서 클린한 오르비를 만듭시다 선거철에 젊은...
-
잘자 3
진마
-
제 개인적으로는 어정쩡하게 나쁜짓하는 사람이 진짜 나쁜 사람보다 책잡히기...
-
13,16,19가 준킬러 171820이 킬러
-
나머지 5set을 과학기술로 구성한뒤 15문항 3회 구성 예정입니다.
-
수분감같은 것보다 기출코드가 1557배는 좋음
-
배고프당 ㅠ 0
힝힝 ㅠ
-
좋은 강사들 과반은 다 대성출신 같음여 김동욱 전형태 김상훈도 지금은 메가지만...
-
https://www.youtube.com/watch?v=TUSCB8IHRpg...
-
이제더할힘이없을뿐
-
3퍼나 무가산 대학 쓰면 한급간이나 반급간 위를 쓸 수 있는데 왜 5퍼를 씀
-
궁금한데
-
한 70분에서 멈췄고 세개 네개 정도 틀린듯? 29번 계산 많아서 걍 포기한거랑...
-
표시제한으로 전화함 미친멘헤라집착광공 근데이제미소녀가아니라육수인
-
왜 진작 안들었을까 싶음
-
진짜뭐지
-
그렇다네요
-
전자기파 문제 푸는게 왤캐 오래걸려
-
세상은 담뇨단이 지배한다 불만없제
-
너무 피곤하다 잠을 늦게 잠->피곤해서 공부 한나도 안되고 독재까지...
-
질문받아요 3
일하고와서 답해드림
-
4코 기코 실개코 다 없었으니까 올해는 싹 다 바꾸셨는데 너무 늦었다고 생각함
-
왼쪽이나 오른쪽이나 여기서 밭갈이 하실 분은 걍 탈릅하세요. 입시 커뮤에다가 뭔...
-
과탐중에 제일 ㅈ밥이고 사탐이랑 비교하면 제일 강함
-
2026 김0한 3회차 수학 실전 모의고사 배포 (공통,미적분 전범위) 14
생각보다 이른 시간 안에 복귀했네요. 후기 많이 작성해주시면 감사하겠습니다. (+...
-
여기나만한닌견이있으려나 18
젤다시리즈 통합 min 3000시간 야숨 900언저리(4+3회차), 왕눈...
-
정치인 제외하면 손흥민 페이커가 욕 제일 많이 먹나 7
김수현도 욕 엄청 먹긴 하던데 아무튼 나는 둘의 멘탈이 너무 신기함 인간혐오 걸려도 이상하지 않을듯
-
수학으로 예를 들면 20문제 대부분이 13번 정도 난이도로 배치되어 있는 느낌이라 빡빡함...
-
[칼럼][ebs] 오히려 많이 알면 독이 되는 문제. 36
안녕하세요 이대은입니다. 오늘은 글 제목 그대로 수능특강에 있는 문제 중 수학2에서...
-
의대를 못감 ㅇㅇ 6모도 25분아래로컷 했는데
-
근데 화생 생각하면 맞는거같아서 화내지도 못함...
-
여기 단원 문제가 다른 단원 개념이 쓰이는 부분도 많고, 따져야 할 것들이 너무 많은 거 같음...
-
잘 3
자
-
대상혁 아 근데 왕뚜껑 맛좀 변했더라..
-
남들은 다 쉽다고하는데 계산속도도 식세팅도 발상 떠올리는것도 다 심각하네 물론 걍...
-
금방 풀었는디 이게 왜 30번..?
-
예각 다룰때랑 예각 아닌 각도 다룰때랑 풀이속도 격차 심해짐. 예각 아닌 각도...
-
뭐이리 살게많냐 3
흠냐뇨이
-
의료서비스가 저렴해지고 질이 상승 >> 의사개인의 수입은 줄어듦 외식비가 저렴해짐...
-
공통수학 1,2 2
수능 준비하려고 하는데 고1 과정인 공통수학 1,2 도 다시 해야하나요?...
-
양승진이 5타된게 16
커리큘럼 구성이 일반적이지 않게 바뀐게 클거같음 이 선생님은 왜 실전개념이 없나요?...
-
독서 수특 5
독서 수특 꼭 풀어여하나요? 독서는 강e분만 보려 햇는데 그냥 풀까여..
-
삼각함수가 개념자체는 엄청 어려운데, 문제는 쉽게 내는구나 1
근데 미적분에선 왜 지랄이야 미친새끼야.
-
남는 마더텅,기타 자료같은거 긁을수 있어서 야무질듯 ㅋㅋㅋ
-
간지+선택과목 유목민으로 23 물1 생2 24 물1 생2 25 생2 지2 26 지1...
ㅋㅋㅋ 풀면ㅁ서 신선하다고 느꼈던 문제는 이 분이 다 가져오시네
엇 ㅎㅎ 저랑 취향이 비슷하신가 봐요 :)
엇 안녕하세요
선생님 글 자주 읽고 있어요 :)
선생님이라니 당치 않습니다
감사합니다 선생님
저는
g(0)=5니 원점과 (t,f(t)) 거리가 t=0 근처에서 대충 5t
피타에 의해 t가 0 근처에서 f(t)가 대충 2sqrt6t
따라서 f'(0)은 대충 2sqrt6
이렇게 풀었는데 옛날 비슷한게 있었던거같네요

오 멋있는 풀이네요김범준 선생님한테 배웠는데
극한식 전체에 곱해진 0아닌 수로 수렴하는 값은 미리 극한을 취해서 계산할 수 있다고 배웠거든요.
그런 논리로 리미트tg(t)에서 g(t)가 t->0일때 5로 수렴하니까
리미트tg(t)=리미트5t라고 계산할 수 있는 건가요?
근데 이러면 피타고라스를 쓸 수가 있나
그냥 근사느낌 풀이인가요?
잠만요 좀있다 설명함
뭐 먹고있느라
근사느낌이긴 해요
t=0 근처에서 함수가 대충 이렇게 될거예요
원점과의 거리가 대충 5t이고 x좌표가 t인 상황이ㅈ6
근사 풀이였군요 감사합니다.
2013 6월 16번 가형
거르면 안되는 이유

기츌 이해도가 좋으시네요!!와 미친 저렇게 풀 수도 있구나
진짜 누구나 아는 기본개념이 까다로운 문제 해결의 키가 되는 문제들이 정말 좋은 문제인거 같아요.
잘만 변형하면 정말 좋은 문제가 되겠네요.
네 맞아요
저도 제 모고에 변형해서 넣을 예정입니다.ㅎㅎ
g(0)만 건드려도 미적분 학생들도 이득이 없지 않을까 싶네요 ㅎㅎ
기출 댓달려했는데 이미있었고
선생님 혹시 (나) 조건이 필요한 이유는 무엇인가요?
미적으로 풀든 미분계수의 정의로 풀든 딱히 써먹진 않은 내용 같아서요.
f를 구할 때 제곱근을 씌우고 거기서 +-가 생기니까 그렇습니다!
아 그렇네요 감사합니다!
이렇게 풀어도 되나요?
첨에 이렇게 풀었어서;;

오 지금 외부라 정확히 판단한 건 아니지만이거도 엄청 발상이 이쁜 풀인데요?
혹시 제가 어디서 좀 써도 될까요?!

이게 그 정도에요? ㅋㅋㅋㅋ 맘껏 쓰세요풀이에 주인이 있는것도 아닌데요 뭐
그럼요 ㅎㅎ 항상 새로운 건 좋은 풀이랍니다!!
감사해요 :)
일단 미분하기 전에 미분계수 정의로 날먹이 되는지부터 확인을 ㅎㅎ
그쵸 ㅎㅎ
흔한 경우는 아니지만 그래도 ebs에 있으니 한 번은 경각심을 갖고~!??
저는 g(t)^2=~ 식으로 t제곱을 넘겨서 미분계수꼴 만들어서 풀었습니다 연속조건 이용하라는거 보면 이렇개 풀라는거 같아서. 기본 행동강령이 일단 네임드 함수랑 모르는 미지의 함수가 나오면 모르는걸 아는걸로 표현해서 푼다는 사고였어용
오 저도 t제곱으로 나눠서 lim t->0 이용해서 풀었어요
뭔가 함수 하나가 명확하게 정리하는 건 맘에 안들어서(원의방정식을 굳이 x에 대해 정리하지 않듯이)