[수학] 20번이 신유형이라고?
게시글 주소: https://orbi.kr/00070170392
안녕하세요
오르비 수학강사 이대은입니다.
2025학년도 수능이 끝나고
첫 글인 것 같네요.
이 글은 25학년도 수험생보단
26학년도 수험생에게 더 도움이 될 거예요!
이번 수능 정말 애매합니다.
등급컷에 대한 이야기도 모두 다르고,
그래서 난이도가 쉽다는 건가
어렵다는 건가
애매하죠.
아마 내년 수능을 준비하는 학생 입장에선
많이 난해함을 겪지 않을까란 생각을 합니다.
오늘의 글 주제는
2025학년도 수능 20번처럼
신유형이 등장했을 때를 대비하는 방법
에 대하여 글을 적어볼까 합니다!
1. 사실 신유형은 없다.
자극적으로 부제목을 정하긴 했으나
저는 수업할 때
이 세상에 신유형은 존재하지 않는다.
라는 말을 정말 많이 합니다.
결론부터 말씀드리면
우리가 느끼는 신유형이라는 문제들은
기존에 존재하던 유형들의 조합이 새로울 뿐
과거에 없던 유형이 등장한 건 아닙니다.
이번 2025학년도 수능 20번을 통해 위의 말을 이해해봅시다.
이번 시험지에서 가장 신유형이라고
평가받는 문항입니다.
이 문제가 신유형이라고 평가받는 이유 중 가장 큰 이유는
문제에서 요구하는 k값을 구하지 않고
풀어야 하기 때문입니다.
최종값에서 괄호 안의 값을
함숫값으로 나타내고 조건에 주어진 항등식 관계를 이용해야 답이 나옵니다.
이와 같이 미지수를 구하지 않고
문제에서 요구하는 최종값을 직접 구하는 문제는 이번이 처음이 아닙니다.
제가 기출분석 강좌 선에서 강조했던 문제 중 한 문제인
아래의 15년 10월 교육청 나형17번을 보시면
마찬가지로 a를 구하지 않고
직접 최종값을 구하는 문제입니다.
완전한 풀이를 설명하진 않겠지만
이 문제는 삼각형의 넓이를 a로 나타냈을 때
와 같은 식이 등장하며 a의 값을 몰라도
답을 구할 수 있게 됩니다.
15년 문제가 도형을 이용한 문제로
삼각형의 넓이를 문자 a를 이용하여 나타낸 식의 형태에서
최종값을 끌어내는 문제라면
25학년도 수능 20번은 항등식을 이용한 문제로
문제에 주어진 함수와 항등식의 형태를 이용해
최종값을 끌어내는 문제 입니다.
도형과 항등식은 누구나 알 수 있는 큰 유형이므로
25학년도 수능 20번은 완전한 신유형이 아님을 알 수 있습니다.
물론 지금 이 문제는
최대한 한 문제와 억지로 유사함을 끌어냈지만
보통의 경우 여러 문항들에 들어 있는 각각의 유형들을 이용해
한 문제가 만들어지는 경우를 따져보면
훨씬 더 유사함을 보인다는 것을 알 수 있습니다.
2. 너무 결과론적인거 아니냐,,?
억지라고 느껴질 수 있습니다.
하지만 이런식으로 기출문제를 접근하지 않는다면
즉, 과거에 경험한 문제들을 이용해 수능에서 도움을 받을 의지가 없다면
우리는 왜 기출문제를 중요시해야 하나요?
여기서부터가 핵심입니다.
이미 존재하는 유형이다.
라고 말하고 글을 끝내면 아무 의미가 없죠.
결국 모든 시험지에 등장할
이런 문제들을 대비하기 위하여
과연 어떤 공부를 해야 하는가
라는 고민을 해야 합니다.
물론 우리가 10문제의 기출문제를 공부하고
여기서 4-5개의 문제가 수능에 나오는 게 아닙니다.
몇 백, 몇 천 개의 기출문제를 공부하고
이 중에서 30문제가 나오는 것이죠.
심지어 4점 문항만 고려하면
13문제가 나오게 됩니다.
따라서 우리는
기출문제를 얼마나 어떤 문제를 푸느냐
보다
기출문제를 어떤 방식으로 학습하느냐
가 훨씬 더 중요합니다.
나중에 칼럼으로 한 번 자세히 소개하겠지만
가장 올바른 방식을 한 줄로 정의하면
최대한 상세히 유형을 구분하고, 구분한 유형별 풀이법을 완전히 암기하는 것
입니다.
예를 들어,
위에 25학년도 수능 20번을 기출분석에서 다룬다고 했을 때
다음과 같이 정리할 수 있습니다.
만약 지금처럼 모든 기출문제를
꼼꼼하게 정리하고 암기했을 때
결국 신유형에 대한 대비는 생각보다
뻔하고 쉬운 방법을 통해 할 수 있는 것이죠.
이건 신유형에 대한 대비 뿐만이 아니라
수학공부에서 특히 기출분석에서 가장 중요한 방향성
입니다.
*자세한 문항 설명이 필요한 분들은 아래 영상을 참고하세요.
오늘 글은 여기까지입니다.
사실 내용을 깊게 적으려다
수능이 끝난지도 얼마 지나지 않았고,
내년 수험생 분들은
아직 기말고사 대비로 바쁠 것 같아서
맛보기 느낌으로 간략하게 적었습니다.
곧 상세하게 적은 글로 돌아올게요.
25수험생 분들은 정말 고생 많으셨고
26수험생 분들은 저와 같이 내년에 파이팅합시다.
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 증가
현) 매시브학원 대치, 경복궁, 분당
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
걍 사탐런을 왜 열여서 탐구과목을 망쳤는지 모르겠음 0
이과라면 과탐 해야한다는 말이 아니라 왜 굳이 선택권을 늘려서 중하위권 표본 다...
-
갓반고 고2 내신 90등대 최근에 정시로 전환한 정시파이터입니다 이번 3모 국수영...
-
더불어민주당 초선 의원들이 이재명 후보의 공직선거법 사건 파기환송 판결을 조희대...
-
수2 못해서 수2만 따로 풀려는데 드릴은 6모 끝느고 풀듯
-
투표용지에는 뭘 골라도 오답일건데 답이라도 있으면 개 쉬운거 아님?
-
정시로 결정한듯... 아 근데 아쉽다 지구는 내가 단독으로 전담하니까 괜찮은데...
-
근데 ㄹㅇ 물1 1
1컷 50 나오는 거 아님??
-
걍 미적하지마 1
확통해
-
곱함수 미가성 1
예를 들어 f × g 라는 함수가 실수 전체에서 미분가능하고 f가 x=a에서...
-
단어도 어렵고 지문 내용도 추상적이고 쉽지않네요 6평때 영어 1 받고싶은데 ㅠ
-
수특 독서 2
수특 독서 다들 안풀어..? 그냥 글 읽고 제재들만 좀 정리하는 편이야?
-
시골 ㅇㅈ 1
-
어렵네요;;
-
2025 방금 1번문제 풀었는데 15 22번급은 아니고 잔잔하게 어려운 4점 느낌이던데
-
무슨 낯짝으로 느그들이 후보를 내냐
-
롤은 머임 1
지그오브제전드는 좆임?
-
“간 지 나 니 까.”
-
말고 그냥 뉴런 수2 완벽히 끝낸뒤 수1 넘어가는 방식으로 해도 되나요?
-
아 피곤해 0
-
토익도 필요해서 준비해야 하는데 수능 영어도 해야하고 ... 토익 공부로 1등급...
-
배고프네 0
-
기하 대충 3등급만맞아도 그 사람보다 기하를 잘하는 사람이고작 대한민국에 수백명밖에 안됨
-
시발..
-
2호선 꺼르비 오라 11
-
미리미리 마음의 준비 하셈 작년 과탐 희망회로가 전부 짓밟혔듯이..
-
수학에서의 추론 실력을 향상시키는 법은 뭘까요
-
확통 미적은 0
둘다 해본결과 25같이나왔을때 무조건 8점은 넘겨야함 걍 공통 20분 더푸는게 ㅈㄴ 큰거더라구요..
-
2월 초부터 공부 시작함 성적 보정기준 3덮 23321 4덮 11132 지금까지한거...
-
내년에도 우리의 승리같다..
-
과탐 1 쉽게나오는거 아님? 3컷 50 나올수도 있을거같은데
-
다 지난 얘기야 0
사랑한단 말도 못했지만
-
표점차 예상 6
확통 미적 표점차 3점 예상해봄 씨발
-
평소에 동경만하던 존잘남의 삶에 대해 궁금하셨던 분들 질문하면 성실히 답변해드릴게요
-
작년에도 그랬는데
-
1컷 80대 나오게 냈으면 좋겠음 2~3개 틀려서 이정도면 잘봤다 싶은데 백분위...
-
영어 김지영T 0
고1 노베가 듣기 괜찮을까요? 조정식T 시작해, 괜찮아 문장편 듣고있습니다
-
헤헤헤헤ㅔ
-
불러오는지 천명한 시험아님? 241122 241128 <- 유형 파훼 원천 불가...
-
나는 왜
-
김종익t 개념 듣는데 거의 다 한자고 몇개는 암기해야 된다는데 다른 강의도 다...
-
흐흐
-
ㅅㅂ 1
ㅅㅂ
-
국어는 11
언매 작년처럼 나오면 좋을꺼같은딩 아니면 불지르던가
-
사설도 조금씩 풀어봐야겠으요
-
어처구니가 없더라
-
울렁거려 2
아 왜이래
-
사문 노베 0
6월시작해서 매일 꾸준하게 1시간씩하면 1뜨나
-
안타까울 따름임

개추으흐흐
잘 읽었습니다 좋은 학습 자료 올려주셔서 감사드립니다

좋게 반응해주셔 고맙습니다'복잡한 형태의 최종값은, 개별로 구하지 못할수 있으며 set값으로써 구해야할때가있다.' 라 말씀하신거맞지요?? 이런 접근은 중학문제에서도 자주 나오더라구요 ㅎㅎ
오호 맞습니다! 뭔가 말씀하신 게 더 고급진 표현 같네요 :)
분야는 다르지만 좋은 글 잘 읽고 갑니다

넵 같이 파이팅해요!기출문제 열심히 풀어본 입장에서 미지수값 일일이 구하지 않고 최종값 얻어내는 형식 꽤 봤죠 예전 나형 30번인가? 알파베타 섞여있는문제, 22수능 13번 등등 당장 생각나는것 여러개 있네요
네네 맞아요
기출을 단순히 경험한다에 목적을 두지 않고 기출을 통해 지식을 학습한다고 생각하면 모든 시험지에 등장하는 문제들이 그다니 생소하게 느껴지는 것들은 많지 않을 거예요 :D
물론 킬러문항은 약간 논외지만요 ㅎㅎ
신유형×
낯설다o
맞죠 이렇게 보는 게 가장 맞는 표현입니다!
안풀려서 울뻔했어요...
괄호 안은 금방찾긴했는데
?->5^-9->함숫값
여기서 앞부분을 봐야되는데 뒷부분만 계속 보고있어서 5트함
ㅠㅠ 현장에서 한 번 안 보이면 찾기 힘들 것 같긴 해요,,
20번은 오히려 내신 준비하는 애들이 더 잘맞았을듯

인정내신대비 때는 정말 적은 단원을 엄청 푸니 아이디어가 겹칠 것 같네요
이게 맞다 연논 2023 가로등 문제도 처음 접했을때나 집합 표현이 낯선거지 신유형은 아님
오호,, 논란에 연논,,
수능 또한 아무래도 요즘 집합이 수험생들에게 깊게 안 느껴지다보니 조금만 어색해도 체감 난이도가 확 올라가는 부분이 있습니다. :D