[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
게시글 주소: https://orbi.kr/00072505601
안녕하세요
이대은입니다.
오늘은
제목을 약간 자극적으로 지었지만
누구나 이해할 순 있지만 누구나 쓰는 풀이는 아닌
이라는 주제로 칼럼을 보여드리겠습니다.
이런 풀이를 이해할 수 있는 것과
시험에서 본인이 스스로 사용하는 건
완전히 다릅니다.
이해할 수 있다고 가볍게 넘어가지 마시고
정말 본인이 시험에서 이렇게 풀 것 같은가 판단해봅시다.
많은 학생들이 이해하도록
무난한 문제로 보여드리는 점 참고하세요!
문제부터 바로 공개하겠습니다.
아래에서 공개하는 풀이는 정말 사소해 보이지만
이 사소한 차이가 조건을 해석할 때 엄청 큰 차이가 됩니다.
절대 어렵지 않은 문제니
한 번 꼭 풀어보시고
혹은
머리로 풀이 스캐치라도 꼭 하시고
글을 읽어주시면 훨씬 이해와 공감이 편하실 겁니다!
그리고 좋아요, 팔로우 한 번 부탁드립니다.
꽤 도움이 되는 글들로 자주 찾아오고 있거든요,, ㅎㅎ
1. 대부분의 학생이 진행할 풀이
일단 문제가 어렵지 않기에
많은 학생들이 반사적으로 손이 반응해서
대부분 동일한 풀이를 이용할 가능성이 높습니다.
아마 다들 이 풀이처럼
주어진 두 조건을 첫째항과 공차를 통해 나타내고
연립을 통해 각각 구해서 답을 구하셨을 겁니다.
물론 틀린 풀이는 아닙니다.
하지만
이 풀이가 수능에서 사용됐다면 문제가 없지만
기출분석을 하거나 공부 중 이렇게 풀었다면 아쉬울 수 있습니다.
바로 이어서 나오는 풀이를 이해해보시죠.
2. 센스가 있는 학생이라면
수학적 감각이 있는 학생이라면
이 문제를 보고 위와 같은 풀이가 아니라
다음과 같은 현명한 풀이를 사용할 겁니다.
먼저 풀이를 소개하기 전에
센스 있는 풀이가 가능하려면
다음과 같은 지식이 머리에 있어야 합니다.
이런 실전개념이 정리되어 있다면
이런 빠른 풀이가 가능합니다.
물론 문제가 쉬워서
누구나 할 수 있는 풀이라고 생각할 수 있지만
이 풀이를 이해하는 것과 풀 때 본인이 스스로 해내는 건
완전히 다른 이야기입니다.
이런 풀이를 경험하고
아 이렇게 풀면 빠르구나
하고 지나간다면 절대 네버 아무 의미가 없는 공부입니다.
이런 풀이를 어떤 근거로 떠올려야 하는가를
이해하고 다른 문제에도 적용시키려는 과정까지가 매우 중요한 공부입니다.
요즘엔 준킬러 (11~14, 20, 21번)에서는
이렇게 주어진 조건을 최대한 효율적으로 활용하려는 사고가
필수입니다.
예시로 든 문제가 쉽기에
그렇게 큰 차이가 안 나 보일 뿐
문제가 어려워지면 확실히 풀이길이에 차이가 납니다.
다음 글은 이번 예시완 다르게 풀이길이 차이가 꽤 큰
22학년도 13번에 대한 칼럼을 적어보겠습니다.
관심이 있으신 분들은
팔로우 해두시고 빠르게 확인하세요!
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 이미지t 커리 타고있는데 세젤쉬-미친기분 시작편 까지 끝냈고 미친개념...
-
미친개념 난이도 10
미친개념 문제 정도면 어려운 3점 ~ 쉬운 4점 정도인가요?
-
어그로 ㅈㅅ 병호햄 사랑해 지금 프메랑 원솔멀텍 병행중인데 더 풀 책이 뭐가 잇을까...
-
ㅈㄱㄴ스블 너무 어려움
-
26수능 치는 현역입니다 올해 여름에 처음 미적분 뒷단원만 대충 훑었고, 겨울에...
-
현재 십일워 수2 들은후 뉴런 하는중인데 대가리 깨질거 같고 아직 미적 시작도...
-
군복무중이라 인강 들을 시간이 적은 상황. 전역은 내년 4월이고 노베이스 이번년도는...
-
이미지vs김기현 0
이미지쌤이랑 김기현쌤중 고민인데 혹시 둘중 누가 더 나을까요 고2 9모기준...
-
세퀘 미적분 9모 직전에 풀기 시작했는데 원래 삼도극파트 이미지 하사십 시즌2 뒤에...
-
은 좀 어그로고 하사십 시즌2 10회 6번이랑 킬패스 시즌1 1회 15번 문제...
-
N티켓 좋다 9
일단 문제집 구성 자체가 ㄱㅆㅅㅌㅊ임 (Day별 구성, 틀린문항 분석+성찰일지,...
-
올해 고3되는 확통러인데 대성패스를 끊었고 이제 수학 선생님만 고르면 되는데 확통...
-
이미지T 현강 1
이미지 쌤 ㄹㅇ 개호감인데 왜 현강 없냐.. 재종만 하시는거임? 아님 원래 현강 없으심?
-
https://youtu.be/z9RfKVE4IC8 뒤에 고민들 연기자분이랑...
-
너넨 수학 해설 이미지쌤 아니었으면 칼들고 쫒아갔다...
-
내년엔 이미지쌤 들을까,,
-
후기좀
-
님드라 아예 수 1,2 건드려본적 없는 노베가 개념부터 차근차근잡으려면 정승제T...
-
제가 미적분을 갖고 싶었는데 확통이 당첨돼서...호옥시 확통이 필요한 미적분...
-
ㄷㄷ 국어 유대종 1타 수학 배성민 2타 복귀 이창무 5타 ㄷ ㄷ ㄷ 갓대종 정작 본인 김승리
-
광클 8
-
예비고3 논술준비러인데 수1 내신 4등급 맞았고 모고 4등급 맞았습니다...물론...
-
노베 위주라고 해서 궁금해요
-
수1,2 다 생질라서 그거 듣고 미친개념으로 넘어가도 될까요? 미적은 세젤쉬부터 시작할 예정
-
수I II 1. 한석원 생질 2. 이미지 세젤쉬
-
예비 고3인데 대성 이미지T 미적분 풀커리 타는 거 어떻게 생각하십니까 다들 ㅜㅜ...
-
핵노베인데용 인강 이미지랑 정승제중에서 추천해주세용
-
선택할 후보가 없다는 말이 이해하지만, 완벽한 후보를 바라니까 그런 것 같아요....

선생님의 칼럼 솜씨가 부럽습니다
엇,,, 제가 제 내용이 부족함이 느껴지는데,,,,, 좋은 말씀 감사합니다저는 실제 문제를 가지고 보여주는 형식의 글이 어렵더라고요
맞아요ㅠㅠ 수학이 직관적인 느낌도 강하고 조금만 내용이 어려워도 글로 이해시키기가 어려워서 저도 쉬운 문제로만 칼럼을 적는 중입니다ㅠㅠ

귀하신 분이 여기까지!!처음으로 칼럼 읽는 수학 4인데 등차중항 떠올린 게 센스였다니 뿌듯하네용
그럼요!
그렇게 의심을 통해 확신으로 풀이가 이어지면 되는 겁니다 ㅎㅎ
휴 살았다

좋은 글 감사합니다 선생님앗 좋게 봐주셔서 감사해요:)
그래도 보자마자 두번째 풀이로 풀어서 휴 했네요

분명 다 아는 개념인데 적용은 또 다른 것 같네요 감사합니다넵 ㅠㅠ 아는 것과 사용하는 건 다른데 많은 학생들이 사후적 풀이를 듣고 안다고 판단해서 넘어가는 경우가 많아 너무 안타깝네요ㅠㅠ