[칼럼][ebs] 오히려 많이 알면 독이 되는 문제.
게시글 주소: https://orbi.kr/00073153044
이대은T_오르비업로드용_2026학년도_수학_5월_교육청_문제_노트정리본.pdf
안녕하세요
이대은입니다.
오늘은 글 제목 그대로
수능특강에 있는 문제 중
수학2에서 재밌는 문제를 하나 보여드리겠습니다.
문제의 난이도가 어려워서 보여드리는 건 아니니
꼭 읽어보시고 도움을 받으셨으면 좋겠네요. :D
바로 문제부터 보여드릴게요.
이 문제는
미적분 선택자는 무난하게 맞출 문제지만
미적분 지식을 사용하지 않고
풀려고 하면 당황하기 좋은 문제입니다.
아 그리고
5월 모의고사 행동강령 정리집도 올려드릴테니
필요하신 분은 꼭 보시길 추천드릴게요 :D
바로 시작해볼게요.
1. 조건해석은 정말 무난하다
주어진 조건을 보시면
어디서나 흔하게 볼 수 있는 조건들이고
점과 점 사이의 거리공식도
아마 모든 수험생이 아는 공식이라 생각합니다.
따라서
는 아마 구하셨을 겁니다.
그럼 이제 문제에서 요구하는
만 구하면 됩니다.
2. 여기서 생기는 문제점
우선 미적분을 선택하지 않은 학생이라면
다항함수가 어떤 함수인지도 모르니
미분계수를 구하는 것 자체가 당황스러울 수 있습니다.
그래서
조건에서 다항함수를 특정하여 구할 수 있는 방법을
떠올리려 남은 조건을 더 해석하려 시도할 가능성이 높습니다.
하지만
문제엔 다항함수란 말만 있고,
몇 차함수인지, 상수항이 0인 것 외엔 딱히 조건이 없습니다.
수업에서 항상 말하지만
안 되는 걸 하려고 시험 도중에 시간을 쏟는 건 완전 낭비다.
를 체감하기 좋은 문제입니다.
이 문제는 다항함수를 직접 구하려는 노력을 포기해야 합니다.
3. 미적분 선택자는
위에서 구한 항등식
을 정리하면
입니다.
일단 앞에서도 말했지만
이 문제는 수특 수학2에서 나온 문제입니다.
공식적으로 미적분을 선택하지 않은 학생은
무리함수에 대한 미분법을 모릅니다.
미적분 선택자는 신나서
를 이용해 t=0을 대입하여 쉽게 답을 구할 순 있지만
이건 수학2 문제니까 수학2 입장에서 설명하겠습니다.
'대치동 암흑스킬'라고 알려져 있는 공식들을
쓰는 건 개인의 자유지만
요즘엔 딱히 몰라도 손해가 아닌 문제들만 출제가 되기도 하니
기본 개념을 이용한 풀이를 소개하겠습니다.
제 생각엔
개념은 알지만 사용하는 학생은 매우 적을 겁니다.
4. 정석적인 풀이
대부분의 학생들은 미분계수를 구할 때
주어진 함수의 도함수를 구해서 x에 대입하여
미분계수를 구합니다.
그런데 이 문제의 경우
미적분을 선택하지 않은 학생들은
의 도함수를 구하는 방법을 모른다는 것이죠.
만약 이 문제를 연계하여 출제한다면
미적분 선택자들도 도함수를 구하지 못하거나,
구하더라도 답을 구할 순 없게 출제할 거라 생각합니다.
이런 경우 미분계수를 구하는 뻔한 방법이 있습니다.
이미 알고 있을 미분계수의 정의
를 이용하는 겁니다.
이 문제의 함수에도 미분계수의 정의를 사용해보면
이므로
을 이용해 쉽게 구할 수 있습니다.
이렇게 미분계수의 정의를 이용하면
미적분 선택자들도 이런 함수의 도함수를 직접 구하는 것보다
훨씬 빠르게 답을 구할 수 있게 됩니다.
오늘 글은 여기까지입니다.
사실 수학에서 연계라는 게 정말 애매하죠.
ebs를 풀지 않아도
대부분의 유형들은 이미 기출문제집에 있습니다.
그래도 정부가 정한
연계교재를 무시하긴 아쉬우니
ebs는 지금처럼 생소한 표현 등을
미리 경험하는 용도로 여기시면 됩니다.
제가 또 재밌는 문제를 들고 올테니
좋아요, 팔로우, 댓글
해주시면 정말 감사하겠습니다!
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
[칼럼] 예고했던 그 글
[칼럼] ebs 미적분 재밌는 문제 하나 보여드림
5월 모의고사 총평
*혹시 몰라 올리는 공통 5월 수학 해설강의입니다
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인절손 ㅠㅠㅠㅠ
-
Kt 미쳤네 ㅋㅋㅋ 15
한화 컷~
-
다 필요없어 해체하자 한화
-
진짜이상함
-
아니 0회차 무료로 준다더니 앱깔고 거기에 구독까지 해야지 주는거였누
-
첫 정답자 3000덕 드리겠습니다!
-
사문 도표 0
성소수자부분은 시험에 출제되지 않아서 강의가 없는데 실제로도 안나오는거 맞나요? 임정환들음
-
정시런데 굳이 이거 사야하나요? 강민철쌤 커리타서 ebs 분석 듣긴하는데 굳이 필요 없나요?
-
이게 맞나? 2
나는 분명히 대학에서 수학할 능력이 있는지 보는 "대학수학능력시험" 을 치고 대학에...
-
맞팔구~~ 1
해주면 나 기분 좋을거같앙~~
-
다른 팀이 볼때는 이건 명명명명명경기야 누가 이겨도 명경기야
-
지금 10번째 지문인 심청전과 마지막 지문 지봉전만 남았습니다. 산문이 글이 길어서...
-
꽃갈피 셋
-
휴
-
이겨야만 한다 이거 이제 지면 나가리
-
와 한화 좆된다 0
이걸?
-
1. 50%가 고졸, 전문대. 얘네들은 중학수학 분모의 유리화 시점부터 수포자인...
-
시우야 그렇게 된것같다..
-
대선 여론조사 2
홍준용 5모 오르새 이근갑 김범준 심찬우 입결 타수 6모 물리 과탐 물2 kbs...
-
3덮 4덮 전대실모 3모순 64 76 58 88인데 어제 전대 58뜨고 충격받아서...
-
삼도극 나왓으면 3
무등비는 안 나왓으면
-
삼양식품이 사상 최대 분기 실적을 또 한 번 갈아치웠다. 삼양식품은 연결기준 올해...
-
ㅇㄴㄷ으 홍준용 이근갑 5모 물리
-
아니 교수님 이거 아니잖아요 논문이 쓰기 싫으시면 말씀하세요 그따구로 땡깡피우지 마시고
-
. 1
만날때시발옷뭐입지?<-이거때문애스트레스존나받으니까하지마셈
-
ㄹㅇ 커즈 뭐냐 0
진짜 개잘하는데 존나 한생 지들이 잘 빨았다고 생각하고 들어갔는데 역으로 빨려서 다 죽었네
-
5타임
-
근데 세지도 거의 공부안하는중이여서..
-
특히 국공립대에서 글케 받는 게 말이 쉽지 제일 중도자퇴율 높은 데가 공대인데 그...
-
그래서 심히 기분이 좋지 않음
-
다시 한 번만~ 돌아와줄래~
-
울룰루쌤이 어쩌다가 13
-
영어 듣기 못하다가 잘해진 분들에게 질문 있습니다. 5
저는 영어듣기 잘하는 사람들은 영어듣기에 나오는 말들을 다 바로바로 해석하고...
-
어떻게 생각하심? 굳이 해야할까..
-
순간 내가 나락갈수도 있음을 감지함
-
그리고 이준석 대통령.
-
[속보] 이재명 민주당 후보 선거 벽보 훼손 20대 2명 체포 5
선거운동용 차량에 붙어 있는 벽보 2장 찢은 혐의 대구남부경찰서는 15일...
-
Everyday Grow, and Glow "매일 성장하며 빛날 당신" 안녕하세요,...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ KT 패배선언...
-
레전드 팁 하나 1
도 없음
-
3수이상이신분들 4
주6일이상 11시간 12시간 공부하시나요???
-
안경 잃어버렷네 1
사실 내가 끼 고 잇 엇네
-
이거 메가선생은 30분안에 다풀수 있을까
-
당연한건가요? 작년에도 빨리갓는데 올해는 왜 더더 빨리가는거같음 벌써6월이라니
-
비 오지 말아라
-
커달리 잠깐 하이라이트 뜨는거 봤는데 개좋았는데?
-
길다가 죽은 새 봤다 12
밟을뻔함
-
와 5
맛잇다
-
공부 조또 못하던 애들이 누굴 가르치노?
-
에휴다노
ㅋㅋㅋ 풀면ㅁ서 신선하다고 느꼈던 문제는 이 분이 다 가져오시네
엇 ㅎㅎ 저랑 취향이 비슷하신가 봐요 :)
엇 안녕하세요
선생님 글 자주 읽고 있어요 :)
선생님이라니 당치 않습니다
감사합니다 선생님
저는
g(0)=5니 원점과 (t,f(t)) 거리가 t=0 근처에서 대충 5t
피타에 의해 t가 0 근처에서 f(t)가 대충 2sqrt6t
따라서 f'(0)은 대충 2sqrt6
이렇게 풀었는데 옛날 비슷한게 있었던거같네요

오 멋있는 풀이네요김범준 선생님한테 배웠는데
극한식 전체에 곱해진 0아닌 수로 수렴하는 값은 미리 극한을 취해서 계산할 수 있다고 배웠거든요.
그런 논리로 리미트tg(t)에서 g(t)가 t->0일때 5로 수렴하니까
리미트tg(t)=리미트5t라고 계산할 수 있는 건가요?
근데 이러면 피타고라스를 쓸 수가 있나
그냥 근사느낌 풀이인가요?
잠만요 좀있다 설명함
뭐 먹고있느라
근사느낌이긴 해요
t=0 근처에서 함수가 대충 이렇게 될거예요
원점과의 거리가 대충 5t이고 x좌표가 t인 상황이ㅈ6
근사 풀이였군요 감사합니다.
2013 6월 16번 가형
거르면 안되는 이유

기츌 이해도가 좋으시네요!!와 미친 저렇게 풀 수도 있구나
진짜 누구나 아는 기본개념이 까다로운 문제 해결의 키가 되는 문제들이 정말 좋은 문제인거 같아요.
잘만 변형하면 정말 좋은 문제가 되겠네요.
네 맞아요
저도 제 모고에 변형해서 넣을 예정입니다.ㅎㅎ
g(0)만 건드려도 미적분 학생들도 이득이 없지 않을까 싶네요 ㅎㅎ
기출 댓달려했는데 이미있었고
선생님 혹시 (나) 조건이 필요한 이유는 무엇인가요?
미적으로 풀든 미분계수의 정의로 풀든 딱히 써먹진 않은 내용 같아서요.
f를 구할 때 제곱근을 씌우고 거기서 +-가 생기니까 그렇습니다!
아 그렇네요 감사합니다!
이렇게 풀어도 되나요?
첨에 이렇게 풀었어서;;

오 지금 외부라 정확히 판단한 건 아니지만이거도 엄청 발상이 이쁜 풀인데요?
혹시 제가 어디서 좀 써도 될까요?!

이게 그 정도에요? ㅋㅋㅋㅋ 맘껏 쓰세요풀이에 주인이 있는것도 아닌데요 뭐
일단 미분하기 전에 미분계수 정의로 날먹이 되는지부터 확인을 ㅎㅎ
그쵸 ㅎㅎ
흔한 경우는 아니지만 그래도 ebs에 있으니 한 번은 경각심을 갖고~!??