칼럼[1] : 망각과 싸우는 방법
게시글 주소: https://orbi.kr/00070764952
[성적 인증]
[칼럼글 모음]
안녕하세요
![]()
첫 번째 공부 이야기
[1] 망각과 싸우는 방법
-부제 : 수학 노트 작성 공부법에 대하여
입니다
짧지 않은 글이지만
저의 수학 실력 향상에 가장 큰 도움을 준 방법에 대한 설명이에요
2등급~높은 3등급 분들에게 가장 도움이 되리라 생각합니다
1. 밑 빠진 독에 물 붓기?
오늘 공부한 내용, 오늘 풀이한 문제는
공부를 제대로 했다는 가정 하에
잘 기억이 날 거에요
자려고 누워서도 생각이 날 테죠
뿌듯한 그 느낌 저도 알아요
새로운 거 하나를 배웠다…난 더 강해졌다…흠냐…
슬프게도 일 주일만 지나면
우리는 분명 까먹습니다
컴퓨터가 아니라 사람이니까요
여기서 문제가 시작돼요
우리는 문제를 풀면서 수학 공부를 합니다
잘 풀릴 때가 아니라 오래 걸린 문제나 풀지 못한 문제에서
학습은 이루어져요
내가 장악하지 못한 문제를 고민하고 풀이법을 알아가는 것
그게 수학 실력을 높이는 방법의 기본이라고 생각해요
그렇지만 문제가 있어요
분명 오늘 열심히 공부한 문제인데
나중에 비슷한 아이디어를 사용하는 문제
심지어는 오늘 풀었던 바로 그 문제를
똑같이 또 틀린다는거죠
한 번은 그렇다 쳐도
두 번 세 번 네 번…
너무나 안 풀리는 문제를 만나 해설을 읽었는데
저번에 못 떠올린 바로 그 아이디어가 적혀 있을 때
환장할 노릇이죠
밑 빠진 독에 물 붓기라는 생각이 들고
나는 재능이 없는 건가, 대체 언제쯤 이걸 정복할 수 있을까?
그런 암담한 기분이 들어요
이에 대한 해결 방법에는 두 가지가 있다고 생각해요
첫째로는 정말 어마어마하게 많은 실패를 경험하는 방법이 있겠죠
엄청나게 많은 문제를 풀이하고, 계속 벽에 부딪힌다면
결국에는 그 벽을 넘을 수 있겠죠
하지만 불가능합니다
우리 목표는 수학 강사가 되는 게 아니라
올해 안에 대학을 가는 거니까요
그래서 제가 생각한 방법이
바로 수학 노트 작성이에요
수능 수학 문제는
생각보다 다양하지 않아요
문제마다 반복되는 상황과 아이디어들이 있고
그 아이디어를 떠올리게 해주는 일종의 표지도
한정적이라고 생각해요
그렇기에 그 표지와 아이디어들을 효율적으로 학습할 수 있다면
효과적인 실력 향상이 가능하겠죠
2. 수학 노트란?
먼저 방법부터 제시하고, 상세한 설명을 덧붙일게요
준비물은 수학 노트로 사용할 노트 한 권과
뭐가 됐든 여러분 실력에 맞는 수학 컨텐츠
그거면 충분해요
1. 수학 문제를 풀이한다
2. 안 풀리거나 오래 걸린 문제를 만난다
3. 해당 문제를 왜 못 풀었는지 분석하고 학습한다
4. 내가 그 문제를 정복하지 못한 핵심을 한 문장으로 요약한다
5. 해당 문장을 수학 노트에 정리한다
6. 수학 노트를 매일매일 누적 복습한다
누군가는 어, 겨우 이거야? 라고 생각하고
누군가는 엄청 빡세다고 생각할지도 모르겠네요
그럼 상세하게 설명해 보도록 할게요
1) 문제를 푼다
문제를 푸시면 됩니다. 다만 한 가지 유의점은, 시간을 재면서 풀이하는 편이 좋다고 말씀드리고 싶어요
예를 들어 설맞이 n제를 통해 공부해야지
라고 생각을 하셨다면
한 문제 풀고 답을 보는 것보다는
요 다음 다섯 문제를 묶어서 몇분 내로 풀어봐야지
라는 식으로
살짝 빡빡하게 목표를 설정하고 푸는 것이 좋다는 말이에요
시험 상황에서 우리는 준킬러 한 문제를 풀 때마다 답을 확인할 수 없으니까요
이렇게 공부하는 편이 심리적 훈련에 도움이 됩니다
그리고 자신에게 맞는 수학 컨텐츠는
정답률이 50퍼센트정도 나오는 문제집이라고 생각합니다
술술 멋지게 풀리는 문제집은 기분만 좋을 뿐
이미 알고 있는 것들에 대한 훈련 이상의 무언가를 얻을 수 없고
반대로 너무 막히는 문제집은 공부를 지속하기가 어려우니까요
2, 3) 안 풀리거나 오래 걸리는 문제를 만나고 학습한다
내 실력에 버거운 문제를 만났습니다
그러면 이제 학습이 일어날 때라는 거죠
아예 접근을 해내지 못했다면
해설지 첫 줄을 읽고 아이디어를 얻은 뒤 나머지 풀이를 전개해보고
중간에 막혔다면
거기서 한 발짝 나아간 부분까지의 해설을 읽고 나머지를 시도해보고
그런 식으로 문제의 답을 논리적으로 도출합니다
그리고 한 번 더 필연성을 따져가며 복기까지 한다면
이제 이 문제는 내가 아는 문제가 된 것이겠죠
아마 여기까지는 많은 분들이 이미 하고 계실거에요
설마 풀고 해설 보고 던져버리는 식의 공부를 하는 사람은 없겠죠?
4, 5) 해당 문제에서 나에게 부족했던 부분을
한 문장으로 추출하고, 노트에 정리한다
여기서부터가 이 방법의 핵심입니다
혼자 힘으로 답에 도달하지 못했거나
비효율적이고 과도한 풀이를 했다면
그건 아마 그 문제 전체가 다 어려워서가 아닐 거에요
하나의 문제를 풀어내기 위해 필요한 여러 단계들 중
하나의 핵심적인 연결고리를 찾지 못했거나
시작점을 잡지 못하는 경우가 대부분이에요
그렇다면 나에게 부족한 부분
즉 내 수학 실력이 향상되기 위해 해결해야 할 문제점은
‘이 문제를 못 푼다’가 아니라
이 문제를 푸는데 필요한 A라는 요소를
몰랐거나, 혹은 알고 있지만 끌어내지 못한 것에 있겠지요
문제를 공부한다는건 그 요소를 찾아내는 과정이에요
그리고 그렇게 찾아낸 수학적 도구를
스스로가 알아들을 수 있는 간결한 문장으로
일반화해서 표현하는 것
이것이 제가 알려드리고자 하는
노트 정리법의 핵심이에요
이해를 돕기 위해 제 수학 노트에 있는 내용의 일부를 가져와봤어요
-기울기가 1인 직선은 풀이에 중요하게 작용하는 경우가 많다.
>직각이등변삼각형의 생성을 통한 닮음 관찰/x좌표와 y좌표간의 연결고리/길이를 옮기는 도구
plus) 기울기가 4/3이나 3/4인 경우는 바로 직각삼각형을 떠올리자
-모르는 좌표를 설정하는 방법에는 두 가지가 있다.
>(a, b)로 설정하는 방법과 (a, a에 대한 식)으로 설정하는 방법. 전자와 후자 각각 장단점이 명확하므로 상황을 관찰한 뒤에 풀이 방향을 생각하자
-복잡한 삼각형 구조는 각표시가 우선이며, 닮음관계 관찰을 놓치는 경우가 많으니 경계하자
-도형 문제에서 자주 놓치는 요소는 사인법칙과 닮음이다
-절댓값 조건의 핵심은 0보다 크거나 같다는 점에 있으므로, 절댓값이 포함된 조건의 해석은 이를 가장 우선시해야 한다
-역함수가 미분 가능하다면 원함수에 미분계수가 0인 지점이 존재하지 않는다(단, 정의된 구간에 항상 주의한다)
간결하게 정리하라고 해서 반드시 한 문장일 필요는 없어요
내가 놓친 그 풀이적 요소를 다른 문제에도 적용할 수 있도록
되도록이면 일반성 있는 언어로 풀어내면 된답니다
또한 다항함수의 비율 관계나 도형 문제 접근법처럼
자주 보며 익숙해져야 하는 내용들도 함께 정리할 수 있어요
6) 매일 누적 복습한다
사실 이 부분은 별거 아니어 보이지만
이 방법에서 가장 핵심적이고 지키기 어려운 부분이에요
이렇게 수학노트를 열심히 작성만 한다고 해서
우리가 그 내용을 정복할 수 있는 건 아니니까요
정리만 하고 복습을 게을리한다면
밑 빠진 독에 물 붓기가 되는건 마찬가지에요
오늘 처음 노트 정리를 시작했다면
그만큼의 내용을 저녁 공부가 끝나기 전에 복습해줍니다
어떤 상황에서 사용된 내용인지 떠올려주면서요
여기에 5분이 걸렸다고 해볼게요
그리고 다음 날, 추가적으로 노트를 작성하게 될거고
역시 저녁 공부가 끝났어요
그럼 이제 누적 복습을 할 시간이에요
어제 쓴 내용을 포함해서, 노트의 첫 부분부터 오늘 쓴 부분까지
전체를 복습해줍니다
오늘 새로이 작성한 내용의 양이 어제와 같다고 가정할 때
과연 복습에 10분이 걸릴까요?
아니요
앞부분을 복습하는 데 걸리는 시간은 점점 줄어들게 되고
나중에는 노트의 앞부분은 정말 훑어보듯이 눈에 스치는 것만으로도 복습할 수 있게 됩니다
노트 한 권이 다 채워질 무렵이 되면
노트 전체를 복습하는 것마저도
그리 부담되는 일이 아니게 만드는 것
그게 누적 복습의 목표랍니다
3. 마치며
제가 이번 글에서 알려드릴 방법은 이게 끝이에요
듣기에는 쉬워 보이지만 정말 강한 의지가 필요해요
그러나 그 효과는 다른 어떤 공부 방법보다
뛰어나다고 생각해요
재능과 수학적 센스가 부족한 사람도
이 방법을 통해 수능 수학이 요구하는 생각의 도구들을
자신의 언어로 표현하고 이를 익혀나간다면
적어도 수능 수학만큼은 잘할 수 있을거라 생각해요
90점을 넘기지 못하고 80초중반에 정체되었던 제가
평가원 백분위 99도 받아보고
사설 모의고사에서 10분 20분씩 시간을 남기는 일도 생길 만큼
어디서 수학을 꽤나 잘한다고 말할 수 있게 된 데는
이 방법을 통해 공부한 것이 가장 큰 도움이 되었으니까요
오늘의 공부 이야기는 이쯤에서 마치도록 할게요
디테일한 부분에 궁금한 점이 있거나
다음 공부 이야기에서 개선되었으면 하는 부분이 있다면
무엇이든 편하게 댓글로 말씀해주세요
저는 올해 원서 접수가 끝난 후에
다음 공부 이야기
[2] 실수를 줄이는 방법
에서 다시 찾아뵙겠습니다
도움이 되었다면
좋아요, 팔로우 한번씩 부탁드립니다 :)
[성적 인증]
[칼럼글 모음]
0 XDK (+10,000)
-
10,000
-
#07년생#08년생#독학생 오르비의 주인이 될 기회 37 35
-
수학 인강 0 0
사관학교 준비하는데 대성 홍창우 쌤이 너무 안 맞아서 다른 쌤으로 할려는데 도움 좀...
-
내일봐오르비
-
ㅈㄱㄴ
-
술먹고싶다.. 3 0
-
ㅠㅠㅠㅠㅠㅠㅠㅠ 옆집 빵꾸났다길래 옆집으로 빠져야될사람들 다여기로왔구나 생각해서...
-
올해 단국 추합 잘 안도나요? 1 0
최근 3년간 추이 이런데 올해 14명 뽑는데 2명 빠졌네요
-
대학가면옯만추해야지 4 0
지금은 똥글을 너무 싸서 안됨
-
홍대 경영 저까지 돌까요 0 0
최초예비 26n 현재 예비 10n n<9 입니다
-
과 단톡 어케 들어가더라.. 4 0
너무 오래돼서 기억이...
-
이십세기출생들은이제좀꺼져봐 6 1
2025암스틸기침하고잇어
-
김승리 커리 0 0
재수생 공부 시작한지 1주일 아직 안됐는데 김승리 시간표 따라가려는데 늦게 시작해서...
-
열품타 인원 모집 4 0
들어오고 싶으신 분들은 쪽지 주세요 ⌯' ꇴ '⌯
-
하소연할 사람도 없고 좃1댔군 4 0
인생이 어질어질해
-
저 화작 선택해도 의미가 없음 1 0
어차피 80분안에 다 못풀어요 그럴거면 컷 낮은 언매가 맞음
-
중대 다군 추합 0 0
올해는 500프로 돌았으면 좋겠는데 제발….. 과 창의ict인데 몇바퀴까지 돌거...
-
과외쌤 25학번 설의 인데 3 2
수석입학 한 사람 누구냐고 물어봐야겠다
-
끝나고 나가는 길에 학생이 물개물개 얘기하더라
-
인하 획득 3 0
인천하와이대학교
-
?
-
내신 반영도 안 하고 인원수도 68명씩 뽑고 그립읍니다...
-
아니시발 근접에서 어그로 뚝한대 몸 두대를 맞췄는데 왜 안뒤지냐 2 0
개좆망겜수준 에휴
-
반수하기싫다 10 0
시발
-
각변환 연습 1 0
각변환이 잘 안되는 것 같은데 각변환 연습할만한 문제집 있나요?
-
난 리트 못하겠다 1 0
그러니 공대를 가야겠어
-
공통+매체 다풀고 마킹하고 나니 37 39를 구경할 시간이 없었다 (O)
-
붙었다씨발ㅠㅠㅠㅠㅠㅠㅠㅠㅠ 13 2
ㅠㅠㅠㅠㅠㅠㅠㅜㅠ씨발진짜 아니 진짜라고?? 꿈아니고??????? 나진짜 수능끝나고...
-
문과 기준 단국대학교 죽전캠퍼스, 아주대학교, 인하대학교 중에 어느 학교가 가장...
-
현실에서 잘갔다 취급 받는 대학은 어디까지일가요 6 0
문득 궁금해졌습니다
-
오르비 샤라웃 함
-
아니시발 내 눈이 이상한건가? 7 0
아니 그 하….
-
ㄸㄸㅇ님 필력 무슨 일임 대체 1 0
최근 메인 두 개 글만 봤는데 필력이 예사롭지 않음 내 레포트 대신 쓰게 하고 싶다 (๑ᵔ⩊ᵔ๑)
-
제주도 장점! 1 1
담배피고 싶을때는 걍 중국말하며 길빵하면 됨 물론 실천하시면 안됩니다~
-
내가수능만점자였다면 0 0
야울대입결떨구기 운동에 일조했을텐데 멍청정파라 울었어
-
26수능 확통 30번 풀이 맞나요??+현장감이 심한가요ㅠㅠ 0 0
미적이엇는데 확통런할 거예요 근데ㅜ 막 확통이 어려워지는 추세라 하고 이번 수능...
-
한양대 가군 쭊쭊빠져라 1 0
쭊쭊쫚쫚 우수수수수 빠진다 대펑크 나버려라
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 단항"붕괴 스타레일의 근ㅡ본 남캐."...
-
이번에 중앙대 4차추합 기준 기계공학과 예비 5번인데 추합 가능할까요?
-
야식 뭐뭑지 20 0
-
토도독 치고 빠지라고
-
문과 진학할거면 일단 이 할일없는 시즌에 집리트를 풀어볼것 2 0
미리미리 각을 잽시다
-
자게되는데 왜이러노 약먹어야하나 근데 한 9시간 알람 맞추고 자면 졸리진 않음
-
작수 문법을 첨으로 풀어봤는데 10 1
38만 현장풀맞이고 최소한 37 39는 풀 시간만 있었으면 풀맞이었구나
-
금융 치료 같네요 돈 정말 중요한거 같아요
-
오르비 총 글 갯수 <— 10 1
몇개일지 감도 ㄹㅇ 안잡힘 10초안에도 글이 계속 올라오는데 500조는 넘으려나
-
숙대 자전 0 0
작년에 303명 모집 161번까지 추합 올해 294명 모집 예비 162번 받았는데...
-
축하인사에 모두 답글을 달았어요 11 3
다시 한번 감사합니다
-
진짜 모든관찰자가 동일한 빛의 속력을 측정한다면 0 1
블랙홀에 사는 사람이 측정하기에도 빛의 속력이 삼십만키로일까?
-
비스크돌에 노바라도 있네 1 0
이거 완전 주술회전이네
-
투표 ㄱㄱ 0 0
[그니까 ㅅㅊㅇ 국어 100점 받을 수 있] https://orbi.kr/00077489738

잘 읽을게요 고맙습니다 ㅅㅅㅅㅅ당연하다고만 생각해서 소홀히했던 부분이네용 잘봤습니다

잊는 것은 병이 맞군요이상 한줄요약이었습니다
글은 잘 읽어봤어요
쓰신 칼럼들 쭉 읽고 있는데 혼자 공부하는 입장이라 이렇게 하는게 맞는걸까라는 확신이 없어서 불안했는데... 옳게 공부하고 있다는 생각이 드네요 저도 수학 참 못해서 힘들고 그러네요... 글 써주셔서 감사합니다
도움이 되었다니 기뻐요
이런 댓글을 받으면 참 보람이 되네요
항상 좋은 칼럼들 잘 보고있습니다.
혹시 기출이 아닌 사설문제를 풀때도 똑같이 수학노트를 작성하는게 맞겠죠?
네 그렇습니다
아이디어들을 배울 수 있는 부분이 있으니까요
잘 읽어주신다니 감사할 따름입니다
혹시 추가적으로 질문을 하셨는데 제가 놓친 것일까요?
학습 질문이 있으시다면 되도록 쪽지로 부탁드려요
댓글은 확인하지 못하거나 알림을 봤다가도 지워져서 까먹을 수 있습니다
(쪽지로 사진첨부가 안되어서 댓글 남깁니다!)
교재에서 문제를 풀때 몰랐던 발상들을 그때마다 사진처럼 문제 옆에 써놓고 교재를 끝낸 후 써놓은 발상들을 한번에 수학노트에 정리해서 옮겨적는 방법을 생각해봤는데 칼럼을 제대로 이해한게 맞을까요?
7등급 노베에서 올해부터 공부를 시작해서 문제풀때마다 모르는 발상이 너무 많네요....
괜찮은 방법입니다만
노트면 노트에 한 번에 적어도 되지 않을까요?
굳이 교재에 적고 다시 옮겨적을 필요는 없어 보여요