[국어 칼럼] 양자역학 지문으로 보는 지문읽는법/기출분석법
게시글 주소: https://orbi.kr/00022344506
안녕하세요 헤르미온느 입니다.
오늘은 2018년 9평 양자역학 지문으로 찾아왔습니다.
오늘도 역시나 지문 먼저 보시겠습니다.
고전 역학에 따르면, 물체의 크기에 상관없이 초기 운동 상태를 정확히 알 수 있다면 일정한 시간 후의 물체의 상태는 정확히 측정될 수 있으며, 배타적인 두 개의 상태가 공존할 수 없다. 하지만 20 세기에 등장한 양자 역학에 의해 미시 세계에서는 상호 배타적인 상태들이 공존할 수 있음이 알려졌다.
미시 세계에서의 상호 배타적인 상태의 공존을 이해하기 위해, 거시 세계에서 회전하고 있는 반지름 5cm의 팽이를 생각해 보자. 그 팽이는 시계 방향 또는 반시계 방향 중 한쪽으로 회전하고 있을 것이다. 팽이의 회전 방향은 관찰하기 이전에 이미 정해져 있으며, 다만 관찰을 통해 알게 되는 것뿐이다. 이와 달리 미시 세계에서 전자만큼 작은 팽이 하나가 회전하고 있다고 상상해 보자. 이 팽이의 회전 방향은 시계 방향과 반시계 방향의 두 상태가 공존하고 있다. 하나의 팽이에 공존하고 있는 두 상태는 관찰을 통해서 한 가지 회전 방향으로 결정된다. 두 개의 방향 중 어떤 쪽이 결정될지는 관찰하기 이전에는 알 수 없다. 거시 세계와 달리 양자 역학이 지배하는 미시 세계에서는, 우리가 관찰하기 이전에는 상호 배타적인 상태가 공존하는 것이다. 배타적인 상태의 공존과 관찰 자체가 물체의 상태를 결정한다는 개념을 받아들이기 힘들었기 떄문에, 아인슈타인은 "당신이 달을 보기 전에는 달이 존재하지 않는 것인가?" 라는 말로 양자 역학의 해석에 회의적인 태도를 취하였다.
최근에는 상호 배타적인 상태의 공존을 적용함으로써 초고속 연산을 수행하는 양자 컴퓨터에 대한 연구가 진행되고 있다. 이는 양자 역학에서 말하는 상호 배타적인 상태의 공존이 현실에서 실제로 구현될 수 있음을 잘 보여 주는 예라 할 수 있다. 미시 세계에 대한 이러한 연구 성과는 거시 세계에 대해 우리가 자연스럽게 지니게 된 상식적인 생각들에 근본적인 의문을 던진다. 이와 비슷한 의문은 논리학에서도 볼 수 있다.
고전 논리는 '참'과 '거짓'이라는 두 개의 진리치만 있는 이치 논리이다. 그리고 고전 논리에서는 어떠한 진술이든 '참' 또는 '거짓'이다. 이는 우리의 상식적인 생각과 잘 들어맞는다. 그러나 프리스트에 따르면, '참'인 진술과 '거짓'인 진술 이외에 '참인 동시에 거짓'인 진술이 있다. 이를 설명하기 위해 그는 '거짓말쟁이 문장'을 제시한다. 거짓말쟁이 문장을 이해하기 위해 자기 지시적 문장과 자기 지시적이지 않은 문장을 구분해 보자. 자기 지시적 문장은 말 그대로 자기 자신을 가리키는 문장을 말한다. 예를 들어 '이 문장은 모두 열여덟 음절로 이루어져 있다.' 라는 '참'인 문장은 자기 자신을 가리키며 그것이 몇 음절로 이루어져 있는지 말하고 있다. 반면 '페루의 수도는 리마이다.' 라는 '참'인 문장은 페루의 수도가 어디인지 말할 뿐 자기 자신을 가리키는 문장은 아니다.
"이 문장은 거짓이다."는 거짓말쟁이 문장이다. 이는 '이 문장'이라는 표현이 문장 자체를 가리키며 그것이 '거짓'이라고 말하는 자기 지시적 문장이다. 그렇다면 프리스트는 왜 거짓말쟁이 문장에 '참인 동시에 거짓'을 부여해야 한다고 생각할까? 이에 답하기 위해 우선 거짓말쟁이 문장이 '참' 이라고 가정해 보자. 그렇다면 거짓말쟁이 문장은 '거짓'이다. 왜냐하면 거짓말쟁이 문장은 자기 자신을 가리키며 그것이 '거짓'이라고 말하는 문장이기 때문이다. 반면 거짓말쟁이 문장이 '거짓'이라고 가정해 보자. 그렇다면 거짓말쟁이 문장은 '참'이다. 왜냐하면 그것이 바로 그 문장이 말하는 바이기 때문이다. 프리스트에 따르면 어떤 경우에도 거짓말쟁이 문장은 '참인 동시에 거짓'인 문장이다. 따라서 그는 거짓말쟁이 문장에 '참인 동시에 거짓'을 부여해야 한다고 본다. 그는 거짓말쟁이 문장 이외에 '참인 동시에 거짓'인 진리치가 존재함을 뒷받침하는 다양한 사례를 제시한다. 특히 그는 양자 역학에서 상호 배타적인 상태의 공존은 이 점을 시사하고 있다고 본다.
고전 논리에서는 '참인 동시에 거짓'인 진리치를 지닌 문장을 다룰 수 없기 떄문에 프리스트는 그것도 다룰 수 있는 비고전 논리 중 하나인 LP를 제시하였다. 그런데 LP에서는 직관적으로 호소력 있는 몇몇 추론 규칙이 성립하지 않는다. 전건 긍정 규칙을 예로 들어 생각해 보자. 고전 논리에서는 전건 긍정 규칙이 성립한다. 이는 "P이면 Q이다."라는 조건문과 그것의 전건인 P가 '참'이라면 그것의 후건인 Q도 반드시 '참'이 된다는 것이다. 이와 비슷한 방식으로 LP에서 전건 긍정 규칙이 성립하려면, 조건문과 그것의 전건인 P가 모두 '참' 또는 '참인 동시에 거짓'이라면 그것의 후건인 Q도 반드시 '참' 또는 '참인 동시에 거짓'이어야 한다. 그러나 LP에서 조건문의 전건은 '참인 동시에 거짓'이고 후건은 '거짓'인 경우, 조건문과 전건은 모두 '참인 동시에 거짓'이지만 후건은 '거짓'이 된다. 비록 전건 긍정 규칙이 성립하지는 않지만, LP는 고전 논리에 대한 근본적인 의문들에 답하기 위한 하나의 시도로서 의의가 있다.
1. 지문에서 하고 싶은 말이 뭐지?
이 지문은 우선 고전 역학과 양자 역학에 대한 소개를 1,2문단에서 하고 있네요. 제가 늘 칼럼에서 이야기하듯이, 앞쪽에서 필자가 하고 싶은 이야기가 바로 나오는 것이 아니라면, 학생들은 핀트를 잘못 맞춘 채 지문을 읽어나가기 쉽답니다. 물론 저도 이 칼럼의 제목을 '양자 역학' 으로 보는~ 이라고 잡았지만, 이 지문은 사실 양자 역학을 말하고자 하는 게 아니랍니다.
그렇다면 필자는 무슨 말을 하고 싶었던 걸까요? 바로 고전 논리학와 반대되는 논리학 중 하나인 LP 입니다. 맨 마지막 문단이 되어서야 필자가 하고 싶은 말이 나온 특이한 지문이네요.
그렇다면 5문단의 거짓말쟁이 문장 관련 내용은 왜 나왔을까요? 이도 바로 LP를 소개하기 위한 밑밥이었답니다.
2. 예시가 나오면 문제로 나온다!
3문단에서 뜬금없이 양자 컴퓨터에 관한 내용이 소개되었습니다.
현실에서 상호 배타적 상태의 공존이 존재한다는 내용 외에는 딱히 언급이 없었는데요.
왜 나왔을까요?
이 또한 문제로 출제하기 위한 밑밥이었습니다. 28번 문제를 보면 양자 컴퓨터와 일반 컴퓨터를 비교하는 보기 문제가 나왔네요. 이렇게 예시가 지문에 나오면 문제로 나올 것을 각오하고 읽어야 한답니다.
3. "예를 들어" 라는 말을 주의하자.
4문단 마지막, 그리고 그 앞 문장을 보실까요?
예를 들어 "이 문장은 모두 열여덟 음절로 이루어져 있다."라는 '참'인 문장은 자기 자신을 가리키며 그것이 몇 음절로 이루어져 있는지 말하고 있다. 반면 "페루의 수도는 리마이다."라는 '참'인 문장은 페루의 수도가 어디인지 말할 뿐 자기 자신을 가리키는 문장은 아니다.
이 2개의 문장을 예로 들어 자기 지시적 문장을 설명하고 있네요. 이 두 문장을 잘 읽었어야 우리는 29번 문제를 잘 풀 수 있었답니다.
4. 비슷한 개념은 (공통점) + 차이점을 비교하며 읽자. 문제로 출제된다.
제 칼럼을 꾸준히 읽으신 분이라면 아시겠지만, 제가 늘 강조하는 부분인 거 아시죠?
이 지문의 마지막 문단에서는 고전 논리(전건 긍정 규칙) 과 LP에 관한 설명이 나옵니다. 둘을 잘 구분해서 읽었어야 합니다. 31번 3점짜리 킬러 문제는 고전 논리(전건 긍정 규칙)와 LP만 잘 구분하여 읽었어도 쉽게 풀 수 있는 문제였습니다.
의 '전자' 는 미시 세계, '팽이' 는 거시 세계로 놓고 LP와 고전 논리(전건 긍정 규칙) 을 비교했으면 쉽게 풀 수 있겠네요.
이번 지문도 네 가지만 조심해서 읽었다면 쉽게 문제를 풀 수 있었습니다.
궁금한 점은 댓글로 달아주시고, 제 칼럼이 도움이 되셨다면 좋아요와 팔로우 부탁드립니다!
즐거운 주말 마무리 하세요!
---------------------------------------------------------------------------------------------------------------------------------
[국어 칼럼] 콘크리트 지문으로 보는 지문읽는법/기출분석법 https://orbi.kr/00022136655
[국어 칼럼] 신채호 지문으로 보는 지문읽는법/기출분석법https://orbi.kr/00022139823
[국어 칼럼] 사회적 할인율 지문으로 보는 지문읽는법/기출분석법https://orbi.kr/00022155965
[국어 칼럼] 슈퍼문 지문으로 보는 지문읽는법/기출분석법https://orbi.kr/00022170273
[국어 칼럼] DNS 스푸핑 지문으로 보는 기출분석법/지문읽는법 https://orbi.kr/00022191203
[국어 칼럼] 포퍼콰인 지문으로 보는 지문읽는법/기출분석법 https://orbi.kr/00022204374
[국어 칼럼] 채권 지문으로 보는 지문읽는법/기출분석법 https://orbi.kr/00022219387
[국어 칼럼] 칼로릭 지문으로 보는 지문읽는법/기출분석법 https://orbi.kr/00022241115
[국어 칼럼] 4모 지문으로 보는 지문읽는법/기출분석법 https://orbi.kr/00022308093
[국어 칼럼] 해시 함수 지문으로 보는 지문읽는법/기출분석법 https://orbi.kr/00022309151
0 XDK (+100)
-
100
-
뭐 있나
-
니 진짜 1
나도 고소할거임
-
가능할까요 저격은 ㅈㄴ 속 시원햇는데 역저격 먹은게 이해안댐 실패한 사람이...
-
질문 받아요 0
서울대 학부 다니고 있고 전공은 AI입니다 (주전공 전컴, 제2전공 수리통계)...
-
너무 비싸긴한데 교재랑 강의가 너무 맘에들어서
-
주변 학교들은 다들 6모 본다는데 저희 학교는 안 보는 것 같아요. 서울 북부 4학군입니다.
-
둘중 하나 택하라고하면 뭐가 더 어려워보임? 전자는 2020 가형 92고 후자는...
-
내가 차단한 사람들끼리 싸운건가 눈씻고 찾아봐도 보이질 않네
-
ㅊㅊ좀
-
그러니까 들으신분들 근들갑 떠는 글 하나씩 써주세요
-
? 14
동일인물이 맞나 뭐지 님아
-
사 엘라 사 티리비
-
남친 여친 둘다 이영수 현강 듣는데 남친이 여친이랑 헤어지고 나서 홧김에 이영수...
-
싸워본적이없음 3
ㄹㅇ 싸울거같으면 바로 ㅈㅅㅎㄴㄷ함
-
저격당하고싶노 3
내가 모르게 쌓은 까르마가 있지 않을까
-
시모 해위해 핀란드의 전직 군인. 20세기 핀란드와 소련이 치른 겨울전쟁에 참전한...
-
고3 싸움썰 풀어볼까
-
매일 일하러 나가서 움직이고 하루 두 끼만 먹는데 그것도 반찬 하나에 햇반 절반...
-
사문 실모 추천 0
시중에 파는 사문 실모 중에 유명한거 뭐뭐있나요?? 예스24나 메가 대성 같은 데서...
-
뉴런을 만족시켜줌
-
진짜 9
손이벌벌떨리네씨발
-
이번에 해설지 준다는데 해설지 잘되어있나요??
-
님들돈까스조아하시면, 14
ㄷㅐ치동에메이가츠꼭드셔보세여국어핑픽
-
부산 갔다가 서울 찍을 예정 빰빰빰빠 제주 촌놈이 간다
-
ㅇㄷㄴㅂㅌ
-
릴러말즈 2
아주 조아
-
새삼 12
가능할까요? 시즌2 글로 저격먹고 잘못한거 사과한 ㅍㅎㄴㅇㅍㅁㄴ이라는 분이 대단해지네 라고할뻔
-
오블락-쿠르투아 2파전이네 바르샤 형님들 제발 이번 엘클에도 참사 부탁드려요
-
하 인증할때마다 심장 콩닥거리고 뇌에서 도파민 아데르날린 뿜뿜하는게느껴저...
-
버섯음 5
벗었음
-
국어 마더텅보단 라이트한 재재별로 나눠져있는 기출문제집 있을까요
-
실시간 광안리 23
어방축제인데 드론으로 국뽕 채워주시네요 완전 멋짐
-
ㄱㄹㅅㄴㄷ
-
바탕모 하나에 13000인데 더프는 전과목 28000 ㄷㄷ 진작 살걸
-
현역때 강민철 선생님 새기분까지 수강하고 파이널때 박준호 선생님 들었습니다. 작년...
-
더프 저격인거 같은데
-
잠깐 없었는데 또싸움?
-
아 섹스하고싶다 6
끼얏호우~~~~
-
화2 질문 0
님들 U자관 삼투현상실험(1기압)에서 물하고 aM용액 반투막 양쪽에 놓고(1번시점)...
-
14문제만 고고
-
친구가 시험지 줬는데 답지가 없어서 채점을 못해용 ㅠㅠㅠ 보내주시면 정성을 담아 절 하겠습니다
-
6평 3
장학유지해야하는데.. 6모전까진 일요일에도 잇올가야게따
-
(개인적인 생각)옛날 저격메타는 재밌는 건 모르겠는데 6
맛있게 싸워서 조금 무서웠거든 이번꺼는 그냥 초딩싸움같음
-
지금 구걸하면 드릴 한권 뚝딱이다<<< 이거 맞음? 4규 주세요 홀수 기출 주세요...
-
논술최저만 해볼까
-
마감까지 풀타임
-
진짜 개씹더러움 21
커뮤 접어야하나
-
온리 한의대 목표고 그냥 올해안에 지방한이라도 가는게 목표인데 지금 시점에 언매...
엠마 왓슨 vs 헤르미온느
ㅆㄷㅈㅋㅋㅋㅋㅋ

왜 눈물을 ㅠㅠ
또..반영을훠훠 내일은 꼭...!!