[칼럼][ebs] 오히려 많이 알면 독이 되는 문제.
게시글 주소: https://orbi.kr/00073153044
이대은T_오르비업로드용_2026학년도_수학_5월_교육청_문제_노트정리본.pdf
안녕하세요
이대은입니다.
오늘은 글 제목 그대로
수능특강에 있는 문제 중
수학2에서 재밌는 문제를 하나 보여드리겠습니다.
문제의 난이도가 어려워서 보여드리는 건 아니니
꼭 읽어보시고 도움을 받으셨으면 좋겠네요. :D
바로 문제부터 보여드릴게요.
이 문제는
미적분 선택자는 무난하게 맞출 문제지만
미적분 지식을 사용하지 않고
풀려고 하면 당황하기 좋은 문제입니다.
아 그리고
5월 모의고사 행동강령 정리집도 올려드릴테니
필요하신 분은 꼭 보시길 추천드릴게요 :D
바로 시작해볼게요.
1. 조건해석은 정말 무난하다
주어진 조건을 보시면
어디서나 흔하게 볼 수 있는 조건들이고
점과 점 사이의 거리공식도
아마 모든 수험생이 아는 공식이라 생각합니다.
따라서
는 아마 구하셨을 겁니다.
그럼 이제 문제에서 요구하는
만 구하면 됩니다.
2. 여기서 생기는 문제점
우선 미적분을 선택하지 않은 학생이라면
다항함수가 어떤 함수인지도 모르니
미분계수를 구하는 것 자체가 당황스러울 수 있습니다.
그래서
조건에서 다항함수를 특정하여 구할 수 있는 방법을
떠올리려 남은 조건을 더 해석하려 시도할 가능성이 높습니다.
하지만
문제엔 다항함수란 말만 있고,
몇 차함수인지, 상수항이 0인 것 외엔 딱히 조건이 없습니다.
수업에서 항상 말하지만
안 되는 걸 하려고 시험 도중에 시간을 쏟는 건 완전 낭비다.
를 체감하기 좋은 문제입니다.
이 문제는 다항함수를 직접 구하려는 노력을 포기해야 합니다.
3. 미적분 선택자는
위에서 구한 항등식
을 정리하면
입니다.
일단 앞에서도 말했지만
이 문제는 수특 수학2에서 나온 문제입니다.
공식적으로 미적분을 선택하지 않은 학생은
무리함수에 대한 미분법을 모릅니다.
미적분 선택자는 신나서
를 이용해 t=0을 대입하여 쉽게 답을 구할 순 있지만
이건 수학2 문제니까 수학2 입장에서 설명하겠습니다.
'대치동 암흑스킬'라고 알려져 있는 공식들을
쓰는 건 개인의 자유지만
요즘엔 딱히 몰라도 손해가 아닌 문제들만 출제가 되기도 하니
기본 개념을 이용한 풀이를 소개하겠습니다.
제 생각엔
개념은 알지만 사용하는 학생은 매우 적을 겁니다.
4. 정석적인 풀이
대부분의 학생들은 미분계수를 구할 때
주어진 함수의 도함수를 구해서 x에 대입하여
미분계수를 구합니다.
그런데 이 문제의 경우
미적분을 선택하지 않은 학생들은
의 도함수를 구하는 방법을 모른다는 것이죠.
만약 이 문제를 연계하여 출제한다면
미적분 선택자들도 도함수를 구하지 못하거나,
구하더라도 답을 구할 순 없게 출제할 거라 생각합니다.
이런 경우 미분계수를 구하는 뻔한 방법이 있습니다.
이미 알고 있을 미분계수의 정의
를 이용하는 겁니다.
이 문제의 함수에도 미분계수의 정의를 사용해보면
이므로
을 이용해 쉽게 구할 수 있습니다.
이렇게 미분계수의 정의를 이용하면
미적분 선택자들도 이런 함수의 도함수를 직접 구하는 것보다
훨씬 빠르게 답을 구할 수 있게 됩니다.
오늘 글은 여기까지입니다.
사실 수학에서 연계라는 게 정말 애매하죠.
ebs를 풀지 않아도
대부분의 유형들은 이미 기출문제집에 있습니다.
그래도 정부가 정한
연계교재를 무시하긴 아쉬우니
ebs는 지금처럼 생소한 표현 등을
미리 경험하는 용도로 여기시면 됩니다.
제가 또 재밌는 문제를 들고 올테니
좋아요, 팔로우, 댓글
해주시면 정말 감사하겠습니다!
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
[칼럼] 예고했던 그 글
[칼럼] ebs 미적분 재밌는 문제 하나 보여드림
5월 모의고사 총평
*혹시 몰라 올리는 공통 5월 수학 해설강의입니다
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보여주나???
-
사문 강사 1
ㅊㅊ
-
자폭장송 시즌2 in 한국판...... 은 근 20년 전 미국에서 나루토의 등장인물...
-
아 우울하다 1
내일 비 오는 건 그렇다 쳐도 토요일까지 비가 오는 건 진짜 아닌데.... 여행...
-
너 좀 귀엽다 ㅋ
-
쑥마님 가셨네.. 11
이걸 눌러서 보실지는 모르겠지만 제가 오르비 처음 질문이 굉장히 황당하고 쌩노베의...
-
지금보다 지1지2 연계성이 많이 높았었어요 앞단원에 화산/지진파 다뤘었고 -> 이게...
-
단순 계산일땐 시간절약 잘되는데 연습말곤 실전에선 적극 활용해도 된다봄
-
남기지 않고 먹었다면 좋았으려나
-
과외 자료로 만든거 오르비에 올리고 싶은데 못 올리는이유 2
특정당할까봐 ㅇㅇ
-
영면
-
진짜 현실적으로 8
지금 6개월해서 한의대 가능할거 같음? 내 작년 6,9,수능 성적이고 언매, 미적,...
-
내가 똥글 쓰디보면 다 떨어져나갈거 같애서 무서움
-
안녕하세요 제가 보건 동아리인데 지금 동아리에서 금연주간으로 표어 공모전을 하고...
-
수탐 선택과목 2
적분과통계 생물 동아시아사
-
현역시절 지1 6
대기의 안정도 + 푄 + 천체 (일식월식 포함) 다 지1이었음 저게 현 지2...
-
난 중딩때 11
롤함 축구함 농구함 공부 는 안함
-
22~24 실모도 푸심뇨?
-
으흐흐
-
어쩌다보니 정병호,김범준 선생님의 투커리를 타게 되었는데 병호쌤의 프로메테우스...
-
삼키로가 찌네.. ;;;;
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
오르비 좋아~~ 1
진짜임뇨
-
미적분 배울때 그느낌 그대로임 대가리 폭발할거같음 ㅋㅋㅋ 이걸 이해해야한다고?...
-
바지에 똥쌌음 21
저메추 ㄱㄱ
-
1. 날 차단한다 2. 탈딮한다 둘중에 하나만 고르세요 질때는 개같이 안오다가...
-
데스노트 넘 재밌네 20
나한테도 데스노트가 있다면.. 사회적으로 딱 두 명 보내고 싶은데 말이지...
-
[단독] '계엄군 국회 진입' 20분 전…추경호·나경원에 전화 건 윤석열 1
[앵커] JTBC가 12·3 계엄의 밤과 이후 며칠 동안의 윤석열 전 대통령 통화...
-
복학해서 개강 당일 입고 갔다가 얼떨결에 인싸됐던 코디 2
안에 셔츠와 구두는 다르게 입었었는데, 카모플라주 패턴 수트 입었다고 이게 인싸가...
-
제일대비안되는게 수상수하 그다음이 수원 그다음 좁혀진게 수투 더 좁혀진게 미적...
-
일단 롤드컵 가고 봅시다
-
안녕하세요. 한방국어 조은우입니다....
-
ㄹㅇ ㅋㅋ
-
오늘도 끝낫군 4
이제하루남앗다...휴
-
왜 지금은 수학 5타를 듣고있지? 메가 대성 둘 다?
-
ㅋㅋㅋㅋ ㅁㅊ
-
쉬운 미적 수특 질문 16
이걸 이렇게 풀었는데..아무리 생각해봐도 단원이 여러가지 미분법이라 미분을 쓰거고...
-
??
-
수영탐 3합7 최저러입니다 수학이나 지구 살려고하는데 살만한가요? 수학은 1컷에...
-
안녕하세요 team AXIOM입니다 오늘은 요청받은 리뷰중 오르비북스의 나랏말씀을...
-
해설지도 저도 제1감수분열 비분리라고 한 건 맞았는데 C에서 만들어진 딸세포가...
-
이샛끼들이 6연패 쌓은것때문임 이게 다
-
세지 0
개념량 많나요? 지구 세지로 돌리려는데 6모까지 어느정도 해야할지 궁금합니다…수학은...
-
기숙 어디갈까요 0
반수반으로 들어갈려고하는데 강대 의대랑 강대 스관, 러셀기숙 중 어디가 좋을까요...
-
모고때 수학 4가 목표인데 킥오프 이미 1화독 마쳤는데 솔직히 개념도 아직...
-
ㄹㅇ
-
영어도 한국사만큼은 아니지만 절평 전/후가 많이 달라지지 않았나요? 0
절평 이전 영어는 진짜 꼬아서 내려면 사람 피말리게도 할 수 있었거든요.
-
인싸 옯붕이들만 답변바람
ㅋㅋㅋ 풀면ㅁ서 신선하다고 느꼈던 문제는 이 분이 다 가져오시네
엇 ㅎㅎ 저랑 취향이 비슷하신가 봐요 :)
엇 안녕하세요
선생님 글 자주 읽고 있어요 :)
선생님이라니 당치 않습니다
감사합니다 선생님
저는
g(0)=5니 원점과 (t,f(t)) 거리가 t=0 근처에서 대충 5t
피타에 의해 t가 0 근처에서 f(t)가 대충 2sqrt6t
따라서 f'(0)은 대충 2sqrt6
이렇게 풀었는데 옛날 비슷한게 있었던거같네요

오 멋있는 풀이네요김범준 선생님한테 배웠는데
극한식 전체에 곱해진 0아닌 수로 수렴하는 값은 미리 극한을 취해서 계산할 수 있다고 배웠거든요.
그런 논리로 리미트tg(t)에서 g(t)가 t->0일때 5로 수렴하니까
리미트tg(t)=리미트5t라고 계산할 수 있는 건가요?
근데 이러면 피타고라스를 쓸 수가 있나
그냥 근사느낌 풀이인가요?
잠만요 좀있다 설명함
뭐 먹고있느라
근사느낌이긴 해요
t=0 근처에서 함수가 대충 이렇게 될거예요
원점과의 거리가 대충 5t이고 x좌표가 t인 상황이ㅈ6
근사 풀이였군요 감사합니다.
2013 6월 16번 가형
거르면 안되는 이유

기츌 이해도가 좋으시네요!!와 미친 저렇게 풀 수도 있구나
진짜 누구나 아는 기본개념이 까다로운 문제 해결의 키가 되는 문제들이 정말 좋은 문제인거 같아요.
잘만 변형하면 정말 좋은 문제가 되겠네요.
네 맞아요
저도 제 모고에 변형해서 넣을 예정입니다.ㅎㅎ
g(0)만 건드려도 미적분 학생들도 이득이 없지 않을까 싶네요 ㅎㅎ
기출 댓달려했는데 이미있었고
선생님 혹시 (나) 조건이 필요한 이유는 무엇인가요?
미적으로 풀든 미분계수의 정의로 풀든 딱히 써먹진 않은 내용 같아서요.
f를 구할 때 제곱근을 씌우고 거기서 +-가 생기니까 그렇습니다!
아 그렇네요 감사합니다!
이렇게 풀어도 되나요?
첨에 이렇게 풀었어서;;

오 지금 외부라 정확히 판단한 건 아니지만이거도 엄청 발상이 이쁜 풀인데요?
혹시 제가 어디서 좀 써도 될까요?!

이게 그 정도에요? ㅋㅋㅋㅋ 맘껏 쓰세요풀이에 주인이 있는것도 아닌데요 뭐
그럼요 ㅎㅎ 항상 새로운 건 좋은 풀이랍니다!!
감사해요 :)
일단 미분하기 전에 미분계수 정의로 날먹이 되는지부터 확인을 ㅎㅎ
그쵸 ㅎㅎ
흔한 경우는 아니지만 그래도 ebs에 있으니 한 번은 경각심을 갖고~!??
저는 g(t)^2=~ 식으로 t제곱을 넘겨서 미분계수꼴 만들어서 풀었습니다 연속조건 이용하라는거 보면 이렇개 풀라는거 같아서. 기본 행동강령이 일단 네임드 함수랑 모르는 미지의 함수가 나오면 모르는걸 아는걸로 표현해서 푼다는 사고였어용
오 저도 t제곱으로 나눠서 lim t->0 이용해서 풀었어요
뭔가 함수 하나가 명확하게 정리하는 건 맘에 안들어서(원의방정식을 굳이 x에 대해 정리하지 않듯이)