[칼럼] 예고했던 그 글
게시글 주소: https://orbi.kr/00072684985
안녕하세요
이대은입니다.
오늘은 전 글에서 예고했던
내용에 대한 칼럼으로 돌아왔습니다.
시작 전에 팔로우, 좋아요 부탁드립니다!
분명 다음 글도 도움이 될 겁니다. :)
바로 문제부터 보여드리겠습니다.
출처는
2022학년도 수능 13번
입니다.
*자세한 해설은 아래 해설강의 보시면 됩니다.
1. 아마 이렇게 풀었겠지
우선 제가 수업 중에도 풀려보면 아래의 풀이처럼
대부분의 학생들이 두 점을 지나는 직선 두 개를 구해서
y절편이 같다는 관계식을 직접 구하는 경우가 많습니다.
직선의 y절편이 같다고 나오니
두 직선의 방정식을 구해서 y절편끼리 같다는 관계식을 구하는 겁니다.
위의 두 관계식을 이용하여
미지수 두 개를 구할 수 있다.
이 풀이는 논리적으로 명확하기에
답을 구하는 과정에서 아무 문제가 없습니다.
이렇게 풀이를 시작하는 학생들은
상위권이 되려면 갈 길이 멉니다.
말이 직설적이라 논란이 될 수 있지만
이런 식으로 푸는 학생들은 평소 문제를 풀며 공부를 할 때
단순히 무의식에 풀어내기만 하려는 학생일 가능성이 크기에
아무리 많은 문제를 풀어도 성적향상으로 이어질 가능성이 매우 낮습니다.
스피드퀴즈처럼
문제를 읽고 신나서 손이 먼저 반응하는 학생들은
절대 수학점수가 잘 나올 수 없으니
아래의 글을 읽고 본인이 해당되는지 판단해보세요!
2. 상위권은 절대 손이 먼저 반응하지 않는다
문제의 난이도를 조절하는 방법은
여러 가지가 있습니다.
조건해석 자체가 어려운 경우도 있지만
계산량을 늘려서 난이도 조절을 하는 경우도 많습니다.
계산량을 늘리는 문제의 경우
조건끼리 유기적인 관계를 이용하면 계산량을 훨씬 줄이는 경우가
많습니다.
최근에 중요한 시험이 끝나면
계산량이 많거나 어려운 문제에 대하여
화려한 풀이가 소개됩니다.
이런 풀이의 핵심은
시험이 끝나고 배우는 게 아니라
시험 도중에 본인 스스로 떠올리는 것입니다.
우선 풀이를 소개하기 전에
여기서 말하는 화려한 풀이는 절대 근사처럼 교육과정 밖이 아니고
조건해석의 관점에 따라 계산해야 하는 부분을 줄이는 것을 말합니다.
이 문제를 보면
네 점을 봤을 때 위아래를 두 점씩 나눠서 보면
y좌표의 비율이 1:2로 일정한 걸 파악할 수 있습니다.
이런
사소한 특징을 의심하고 집착해서 조건을 해석하려 노력하는 태도가
현명한 풀이를 떠올릴 수 있는 가장 중요한 단계입니다.
비율이 같음에 의하여
어떤 특징이 있나를 고민해보면
아래와 같은 결론이 나옵니다.
그림 먼저 보여드리고 설명해드리겠습니다.
그림을 보시면
두 직선을 지나는 점을 보면 y값의 비율이 1:2 이므로
직선 위의 두 점에서 x축까지의 비율이 p:q로 같습니다.
따라서
각각의 직선 위의 두 점의 수선의 발과 x절편을 이용하여 직각삼각형을 만들면
분홍색으로 표시한 가로 길이비가 같아야 합니다.
이때
두 직선의 수선의 발끼리 길이가 b-a로 같기에
x절편까지 비율이 같음을 이용하면
두 직선의 x절편은 서로 같아야 함을 알 수 있습니다.
그런데 문제에서 두 직선의 y절편이 서로 같다고 했으므로
라는 결론을 얻을 수 있습니다.
세 점
이 한 직선 위에 있어야 하므로
에 의하여 다음과 같은 관계식을 구할 수 있습니다.
맨 처음에 직선의 방정식을 구해서 푸는 풀이보다
훨씬 빠르게 같은 관계식이 나옴을 알 수 있습니다.
*해설강의
위 두 가지 풀이를 보시면 아시겠지만
같은 문제도 어떻게 푸느냐에 따라 풀이길이가 다릅니다.
우리가 기출분석을 할 때는
단순히 답을 구하는 것에 목적을 두면
이런 풀이를 학습하지 못하게 됩니다.
또한
이런 풀이를 이해하더라도
처음보는 문제에서도 본인 스스로 떠올리지 못하면
아무 의미가 없습니다.
따라서
이런 풀이를 이해하는 것에만 포커스를 두지 말고
왜 그런 풀이를 떠올려야 하는지 당위성을 반드시 파악해야 합니다.
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 문학론 2
김상훈 선생님 문학론 듣기 전에 고전시가tmi랑 문학개념매뉴얼 듣는 게 좋을까요?...
-
스카에서 손톱깎는 새끼가 진짜로 있구나
-
엔제 푸는이유<< 수능 잘 보려고, 문제 퀄이 좋아서 기출 모방= 엔제 기출<<<...
-
ㅋㅅㄴ ㅌㅌ?
-
이미지 글이랑 비교하니까 너무 참혹하다
-
70때 사진 올려보고 싶긴한데 꼬리잡힐까봐 걱정이네
-
ㄱㅊ나요?
-
무의식적 백지복습
-
상의 흰티에 인디고 데님자켓 하의 흰 화이트팬츠+첼시부츠 전체적으로보면이런느낌인데...
-
3월 말쯤부터 해서 제대로 풀어진거같네요….다시 정신 좀 차려야겠음 미친거같음 진짜로
-
이미지 메타 써주는데 63
상처 받지 않을 사람만 ㄱㄱ 롤 끝나고 써드림
-
21세기 정상국가에서 친위쿠데타 일으킨 병신은 리짜이밍 인민장군에게 직권을 양위하고 물러가십시오
-
김상훈 ebs 를 부탁해 아니면 엄선경 ebs 둘다 인강 안듣고 책으로만 하려하는데...
-
하나둘씩 풀리니깐 기쁘다... 예전엔 손도 못 댔을텐데 오늘 210630 40분...
-
옳게 된 수학 합답형 11
8지선다형 도입원하면 개추
-
이건 처음보네..
-
칭찬 좀 해주셈 9
ㄱㄱㄱㄱㄱㄱㄱ
-
백호T 인강 듣고 생명과학 공부중인데 흥분전도 추론형 문제가 너무 안풀려요ㅜㅜㅜ...
-
실시간으로 보면서 역사적 순간 함께하기 Vs 폰꺼뒀다가 오후 1시쯤 각종...
-
야이 ㅁㅊ새끼야 4
-
사람 보는 눈이 날카롭다 근데 그 눈은 거울을 보면 자기도 투과해버려서 때론 아픈...
-
이악물고 찬물샤워 해볼게요 하 너는 해병대야 너는 유디티야 너는 덱스야 너는 백골부대야
-
확통사탐 작수 12121 스카이 상경 목표인데 작년보다 열심히 하면 될까요…
-
3문단에서 토대론자들에 의해 기초 믿음은 추론 과정이 필요 없고 4문단에 의해 기초...
-
작년 재작년 수능 풀어보니까 국영 과탐은 괜찮은데요 미적이 자꾸 삑사리가 나네요...
-
인강 들으면서 마지막으로 기출 정리 하고싶은데 어떤게 좋을까요?
-
입시는 멘탈 게이지 싸움임 빨리 접해서 기만 빨릴려는거 아니면 입시판 일찍 들어와서...
-
오르비언들 나땜에 관뒀기 때문임
-
지문 자체를 디시식으로 뇌내 치환해서 읽음 예전에 이런 글 보고 재미로 따라하다가...
-
배고프다 3
집으로가자
-
이건 매우 위험하다
-
작년 재작년 수능 풀어보니까 국영 과탐은 괜찮은데 미적이 자꾸 삑사리가 나네 가산점...
-
국어 탐구 잘보면 될거 같은데... 원래 꿈은 높게 잡는거니깐 ㅎㅎ
-
점심저녁때는 오르비를 들어올필요가
-
생각보다 사람들은 남의 우울에 공감하지 않는다는 거임
-
내 몸에 반미세력이 침투한게 틀림없음ㅇㅇ
-
오노추 18
어릴때 힘들때 더팻랫 노래 많이 들었던 기억이 있네요
-
Nft 0
Ntf Etf Eft
-
탄핵 기각 인용 이걸로 덕토 판을 크게 벌려줬을 텐데 아쉽구만
-
미적 수특1강 (2회독째) 영어 대의파악 4문제 독서검더텅 2지문...
-
내프사 귀엽지?? 10
-
더는 공부하기가 싫어서요 진심으로 좋은말 써주면서 같이 으쌰으쌰 하자는 의미로
-
본인 ㅈ됨 3
내신과목 6개 내신파이터. 1달 공부 후 6모, 1달 반 공부 후 9모 2달 공부 후 수능 ㅅㅂ
-
내일부터 다짐 7
1. 손 뜯지 말기 뜯고 싶을때마다 물 마시기 2. 졸리면 스탠딩 책상 가기 3....
-
이제 안하면 진짜 큰일날거같아
-
사주세요
-
덧셈 뺄셈에서 자꾸 삑나냐 ㅅㅂ

감사합니다
엇 감사합니다
저는 상위권이 되려면 멀었군요...ㅠㅠ근데 이 내용 옆동네 출제자 분도 언급하신 걸 보면 중요한 것 같아요:)
아닙니다 ㅎㅎ 그저 자극적인 내용을 적다보니,,,,,,,,ㅎㅎ
한 문제로 판단하긴 그렇고 열심히 하신다면 충분히 상위권이 되실 겁니다!

감사합니지아직 배울게 많네요..

엥 전혀 아니실 것 같은,,,,
의벳님아 가장 좋은 해설인듯 합니당 이 문제 해설 저 버전 볼때마다 원점지난다 사후적이라 생각했는데 x절편도 같다 = 즉 원점 이 발상이 필요하네여

엇 좋은 말씀 감사합니다