[칼럼] 예고했던 그 글
게시글 주소: https://orbi.kr/00072684985
안녕하세요
이대은입니다.
오늘은 전 글에서 예고했던
내용에 대한 칼럼으로 돌아왔습니다.
시작 전에 팔로우, 좋아요 부탁드립니다!
분명 다음 글도 도움이 될 겁니다. :)
바로 문제부터 보여드리겠습니다.
출처는
2022학년도 수능 13번
입니다.
*자세한 해설은 아래 해설강의 보시면 됩니다.
1. 아마 이렇게 풀었겠지
우선 제가 수업 중에도 풀려보면 아래의 풀이처럼
대부분의 학생들이 두 점을 지나는 직선 두 개를 구해서
y절편이 같다는 관계식을 직접 구하는 경우가 많습니다.
직선의 y절편이 같다고 나오니
두 직선의 방정식을 구해서 y절편끼리 같다는 관계식을 구하는 겁니다.
위의 두 관계식을 이용하여
미지수 두 개를 구할 수 있다.
이 풀이는 논리적으로 명확하기에
답을 구하는 과정에서 아무 문제가 없습니다.
이렇게 풀이를 시작하는 학생들은
상위권이 되려면 갈 길이 멉니다.
말이 직설적이라 논란이 될 수 있지만
이런 식으로 푸는 학생들은 평소 문제를 풀며 공부를 할 때
단순히 무의식에 풀어내기만 하려는 학생일 가능성이 크기에
아무리 많은 문제를 풀어도 성적향상으로 이어질 가능성이 매우 낮습니다.
스피드퀴즈처럼
문제를 읽고 신나서 손이 먼저 반응하는 학생들은
절대 수학점수가 잘 나올 수 없으니
아래의 글을 읽고 본인이 해당되는지 판단해보세요!
2. 상위권은 절대 손이 먼저 반응하지 않는다
문제의 난이도를 조절하는 방법은
여러 가지가 있습니다.
조건해석 자체가 어려운 경우도 있지만
계산량을 늘려서 난이도 조절을 하는 경우도 많습니다.
계산량을 늘리는 문제의 경우
조건끼리 유기적인 관계를 이용하면 계산량을 훨씬 줄이는 경우가
많습니다.
최근에 중요한 시험이 끝나면
계산량이 많거나 어려운 문제에 대하여
화려한 풀이가 소개됩니다.
이런 풀이의 핵심은
시험이 끝나고 배우는 게 아니라
시험 도중에 본인 스스로 떠올리는 것입니다.
우선 풀이를 소개하기 전에
여기서 말하는 화려한 풀이는 절대 근사처럼 교육과정 밖이 아니고
조건해석의 관점에 따라 계산해야 하는 부분을 줄이는 것을 말합니다.
이 문제를 보면
네 점을 봤을 때 위아래를 두 점씩 나눠서 보면
y좌표의 비율이 1:2로 일정한 걸 파악할 수 있습니다.
이런
사소한 특징을 의심하고 집착해서 조건을 해석하려 노력하는 태도가
현명한 풀이를 떠올릴 수 있는 가장 중요한 단계입니다.
비율이 같음에 의하여
어떤 특징이 있나를 고민해보면
아래와 같은 결론이 나옵니다.
그림 먼저 보여드리고 설명해드리겠습니다.
그림을 보시면
두 직선을 지나는 점을 보면 y값의 비율이 1:2 이므로
직선 위의 두 점에서 x축까지의 비율이 p:q로 같습니다.
따라서
각각의 직선 위의 두 점의 수선의 발과 x절편을 이용하여 직각삼각형을 만들면
분홍색으로 표시한 가로 길이비가 같아야 합니다.
이때
두 직선의 수선의 발끼리 길이가 b-a로 같기에
x절편까지 비율이 같음을 이용하면
두 직선의 x절편은 서로 같아야 함을 알 수 있습니다.
그런데 문제에서 두 직선의 y절편이 서로 같다고 했으므로
라는 결론을 얻을 수 있습니다.
세 점
이 한 직선 위에 있어야 하므로
에 의하여 다음과 같은 관계식을 구할 수 있습니다.
맨 처음에 직선의 방정식을 구해서 푸는 풀이보다
훨씬 빠르게 같은 관계식이 나옴을 알 수 있습니다.
*해설강의
위 두 가지 풀이를 보시면 아시겠지만
같은 문제도 어떻게 푸느냐에 따라 풀이길이가 다릅니다.
우리가 기출분석을 할 때는
단순히 답을 구하는 것에 목적을 두면
이런 풀이를 학습하지 못하게 됩니다.
또한
이런 풀이를 이해하더라도
처음보는 문제에서도 본인 스스로 떠올리지 못하면
아무 의미가 없습니다.
따라서
이런 풀이를 이해하는 것에만 포커스를 두지 말고
왜 그런 풀이를 떠올려야 하는지 당위성을 반드시 파악해야 합니다.
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오 9
오
-
2월 부터 림잇으로 랭윤 시작했고요 지금 사회계약론까지 진도 나갔는데 여러번 개념...
-
트러스를 풀다 이로운을 풀다
-
시대인재가 총 세 분한테 수업을 듣는데 아직 한 분 강의 밖에 안 들어보긴...
-
kbs 담요감성 0
빅플릭스 나만 오글거리냐 그림체하며 개그 포인트가 딱 담요식 감성 존나 오글거려서...
-
정떡 4
우정떡치기
-
원하는거 댓으로
-
웹르비 장점 2
광고 안 볼 수 있음 삭제,차단 댓 안 볼 수 있음 레어 안 볼 수 있음 댓글 밑에...
-
로블 재밌다 3
으헤헤
-
설수의기원1일차 8
의문의 여목러 만나러 가자
-
이 흐름을 바꾸어보겠다!!!!!!!! 손글씨 써드릴게요 46
원하는 문장 적어보세요 영어도 한글도 일본어도 한자도 가능
-
하 설레,,,
-
그 다음에 누가 ㅇㅈ하노… 빨리 다른 사람 ㅇㅈ 해버ㅏ라
-
맞짱뜰새끼? 8
없군.
-
누구나. 자유롭게활동하는. 오루비. 괜히. 설래는맘. 품고.여사님들괴롭히지맙시다....
-
되게ㅐ 큼
-
미적 시발점이 좀 어려워서 딴 거 할려하는데 지금 속도와 가속도까진 했어요. 근데...
-
클월... 근데 이것도 잘가봐야 8강딱 당할것같지 왜
-
나랑 사귈 사람 13
어딨음
-
제 여친을 소개합니다 10
예쁘죠
-
기대할게요♡
-
핸드폰 공부랑 컴퓨터 공부함
-
이미지 아는대로 써드림 45
-
3모 보고 처진뒤로 공부할 때마다 눈물이납니다 눈물 안 날 때조차도 그냥 진짜 책...
-
미적하시는분들은 풀어보셈뇨
-
과년도 서바 문항 풀듯 들어간 자본이나 문항의 질이나 가격이나
-
생윤 커리 1
생윤 개념 한 번 다 돌리긴 했는데 뒤에 갈수록 제대로 안외우고 문제도 거의 못풀고...
-
또하면내가개다 댓글예상:개한테 사과하세요
-
아오 좀 와서 16
다리 좀 주물러봐 어깨랑 좀 두드려봐
-
이해원 샀는디 다 풀고 풀만함?? ㅂㄹ면 다른 시중n제 사게요
-
[칭찬글] 오르비언이 얼마나 착한지 ARABOJA 31
(놀랍게도 이번주내에 모두 벌여진 실화) 오르비언: 오르비언: 오르비언:
-
방금 덕코를 처음 받아봐서요 현실에서 쓸 수는 있는건가요?
-
으하하하하 5
으하하하하하하하
-
4/3 작년까진 수동적으로 받아들이는 공부를 했다면 올해는 능동적으로 내것으로...
-
이해원 드디어 3
Day 4 수1 처음으로 다 맞았다 가르깔깔
-
확통 사탐으로 의대가 뚫리나요? 부산에 살아서 지역인재로 넣을건데 확통으로 의대를...
-
[칼럼] '수능을 수능답게, 수학을 쉽게 보는 방법.' - '수학1 - (1) 지수와 로그' 8
‘수능을 수능답게, 수학을 쉽게 보는 방법,’ - 수학Ⅰ- (1) ‘지수와 로그’...
-
걍 하지 말아버리셈 텔레포트, 파이어볼, 썬더볼트 쓰는게 남는 장사지
-
[단독] '현금 살포' 공무원노조 "시위 참가하면 10만원 주겠다" 2
전국공무원노동조합 산하 한 지역지부가 현금 지급을 내걸고 서울에서 열리는 각종 시위...
-
1. 국회, 그니까 입법부 권한을 대놓고 정면으로 부정중이죠? 2. 가짜뉴스...
-
29700원으로 받고있음 지금
-
tim 해볼까 1
빨더텅 해볼까 생각했는데 이게 있었네 김승리 ebs만 듣고 있는데 ㄱㅊ...?
-
기분대로살아야지 0
계획너무싫어
-
자취하고잘취해요 4
둘 중 하나는 뻥임
-
나는 피곤하다 4
ㅈㄴ 피곤하다
-
미적- 수특 내신범위까지+컨택트+4규+시대컨 공통-수특 끝까지+ 지인선n제+시대컨...
-
여자친구랑 삼겹살 5인 분에 소주 2병이었음 근데 성인 되어서 소주를 먹어보니...
-
이제 아지트다 ㅅㄱ
-
이번에 김기현 T 수 1,2 킥오프까지 보고 3모를 봤는데 낮은4? 조금만 더...

감사합니다
엇 감사합니다
저는 상위권이 되려면 멀었군요...ㅠㅠ근데 이 내용 옆동네 출제자 분도 언급하신 걸 보면 중요한 것 같아요:)
아닙니다 ㅎㅎ 그저 자극적인 내용을 적다보니,,,,,,,,ㅎㅎ
한 문제로 판단하긴 그렇고 열심히 하신다면 충분히 상위권이 되실 겁니다!

감사합니지아직 배울게 많네요..

엥 전혀 아니실 것 같은,,,,
의벳님아 가장 좋은 해설인듯 합니당 이 문제 해설 저 버전 볼때마다 원점지난다 사후적이라 생각했는데 x절편도 같다 = 즉 원점 이 발상이 필요하네여

엇 좋은 말씀 감사합니다