[칼럼] 이 문제 눈풀 가능?
게시글 주소: https://orbi.kr/00071292415
안녕하세요
오르비by매시브 수학강사 이대은입니다.
벌써 2025년이 되고
이주일이나 흘러서
수업하는 모든 반이 개강했네요!
개강주도 끝났고
시간도 여유가 있어서
칼럼을 들고왔습니다.
주제는
과연 나는 생각을 하며 문제를 푸는가
입니다.
그리고 생각을 한다면
아래에 있는 문제 정도는 바로 눈풀이 가능할 거예요.
이 내용을 바탕으로 문제를 통해 예를 보여드립니다.
문제는 늘 그랬지만
칼럼의 이해를 위하여
충분히 풀 수 있는 쉬운 문제로 준비했으니
꼭 읽어보세요.
실제로 준킬러 이상의 고난도 문항들은
생각을 하지 않으면 절대 풀리지 않는 경우가 많으니
이 문제가 쉬운 문제라고
주제를 간과하시면 절대 안 됩니다!
먼저 좋아요, 팔로우를 해주시면 매우 미리 감사드려요 :D
* 이 글은 이미 상위권인 학생에겐 당연할 수 있음을 미리 알려드립니다.
1. 문제를 풀 떄 생각한다는 것이 무엇인가
절대적인 기준이 될 수는 없겠지만
간단하게 나눠드리면
본인이 문제를 읽고 손이 먼저 반응하여
이것저것 시도하다 답을 낸다면 생각을 하지 않는 경우가 됩니다.
물론 여기서 예외는 있습니다.
수학에 감각이 탁월하여
본인은 손부터 나간다고 생각하지만
대부분 한 번에 답이 나오는 경우입니다.
하지만 이런 경우는 극소수기에
제외하고 글을 적어보겠습니다.
보통의 경우에서 생각을 하며 푼다는 건
조건들의 의미를 파악하고, 어떤 유형인지 파악하여
해당 유형에서 이어지는 풀이를 적용시키려고 합니다.
이런 판단을 하는 게 생각하는 풀이입니다.
생각하며 푸는 건 매우 중요한데
이와 관련하여 아래에서 다뤄보겠습니다.
2. 생각을 하며 푸는 게 중요한 이유
수학을 잘하는 학생들
즉
논리적으로 풀이를 이어나갈 수 있는 학생들은
본인이 사용하는 수학적 도구가 충분히 당위성이 있다는 것을 알기에
본인의 풀이에서 무조건 답이 나온다는 것을 압니다.
그런 학생들은
낭비하는 시간도 적어지고
만약 본인의 답이 선지에 없어도
논리가 정확하다는 것을 알기에 계산실수만 찾으면 답이 나오게 됩니다.
그런데 만약 생각을 하지 않고 수학문제를 접근하는 경우
같은 문제를 시간을 두고 푸는 경우 또다시 못 풀 거나
본인 풀이에 확신이 없어서 답이 안 나오면 새로운 풀이를 떠올리려 합니다.
하지만 새로운 풀이를 떠올리는 것도
어떤 논리적 사고에 의해 떠올리는 것이 아니라
그냥 또다시 이것저것 시도하게 됩니다.
게다가
이런 학생들이 주로
최단경로의 풀이를 들으면 이해는 쉽게 하지만
스스로 문제를 풀 때는 이런 생각을 못하는 경우가 정말 많습니다.
대표적인 이유로는
공부를 그래도 꽤 해서 풀이를 들으면 이해가 바로 되더라도
해당 풀이를 왜 쓰는지 모르기에
변형문항이나 유사문항을 만나면 또다시 풀이가 떠오르지 않는 것입니다.
모든 풀이에는 근거가 있습니다.
그런 근거들을 토대로 기출문제들을 살펴보면
같은 수학적 도구를 사용하는 문제들은
무조건 같은 근거들을 갖고 있기에
그 어떤 풀이도 결과론적이지 않고 충분히 당위성이 있다는 것을
알게 됩니다.
그리고
가끔 어떤 풀이는 생각도 못했지만
막상 풀이를 들어보면 훨씬 빠르게 풀리는 풀이가 있지만
혼자 풀 땐 의심조차 하지 못하는 경우가 있습니다.
아무리 화려해 보이는 풀이라도
해당 풀이를 사용하는 근거는 생각보다 단순하며
그 근거는 이미 우리가 알고 있는 내용일 가능성이 높습니다.
단지
조건을 보고 의심하고 집착하는 습관이 없어서
해당 풀이를 떠올리지 못할 가능성이 높습니다.
아래의 문제를 통해
제가 보여드릴 풀이가 본인이 스스로 떠올렸는지
한 번 이해해 보세요.
꼭 문제 먼저 읽고 풀이를 떠올린 다음
아래의 글을 읽어보세요!
1. 흔하디 흔한 학생이라면
삼차함수의 그래프를 가장 먼저 그릴 겁니다.
하지만
이 문제를 보고 그래프를 먼저 그리고 풀이를 시작했다면
조건에 대한 판단과 해석을 하지 않을 가능성이 높습니다.
조건이 어떤 유기적인 관계를 갖고,
해석했을 때 어떤 상황인지에 대한 판단없이
바로 그래프를 그린다면
절대 안 됩니다.
이 문제는 난이도가 낮아서 딱히 상관없어 보일 수도 있지만
실제 준킬러 이상의 문제들을 보면
조건의 해석을 하고 풀이를 시작하는 경우와
그냥 손이 가는 대로 풀이를 시작하는 경우는 많은 차이가 납니다.
2. 하지만 어떤 학생들은
모든 풀이에는 근거가 필요합니다.
우선 아래의 내용을 미리 알고 있어야 합니다.
이 내용을 알고 있다면
절댓값이 있는 삼차함수의 극댓값 후보는
삼차함수의 극댓값과 극솟값 뿐이고 서로 부호만 반대임을
알 수 있습니다.
그런데
삼차함수는 항상 변곡점에 대하여 대칭이므로
다음과 같은 상황을 만족시킨다.
*영상해설입니다.
쉬운 문제라 직접 손으로 풀어봤다면
아마 많은 분들이 답을 구했으리라 생각합니다.
변곡점을 이용한 풀이도 물론 쉽게 이해가 됐을 겁니다.
그런데
문제를 읽고 스스로 풀이를 떠올렸을 때
한 번에 떠오르지 않더라도
변곡점을 이용한 풀이를 떠올렸느냐
혹은
떠올렸을 때 당위성을 충분히 파악하며 찾아냈느냐
를 점검하셔야 합니다.
문제를 읽어나가는 태도도 습관입니다.
나는 괜찮겠지
나는 아니겠지
라는 생각으로 가볍게 여기지 마시고
수험생 초기에 올바른 방향으로 일년을 끌고 가시길 바랄게요!
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
오늘의 글은 여기까지입니다.
:D
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
또는
이대은T연구실 번호
01080719636 (선 문자 후 통화가능)
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크 (공통반/ 미적분반)
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내일 혼자 한강가야지 25
약속이없아용
-
서있는게 편한데 왜 안 앉냐고 개지랄 지가 응시원서 얘기 안했으면서 안갖고왔냐고...
-
(나)에 신소재 극소량 첨가, 계산량 꽤 있음
-
과외 두개만 더 할까,,
-
‘산불헬기 4대 도입’ 합의했지만…野예산 일방삭감에 ‘물거품’ 1
[이데일리 조용석 기자] 여야가 올해 산불헬기 4대를 추가 도입하기 위해...
-
이정도면 혹시 센츄 가능할까요?ㅠㅠ
-
정시 연고공이면 지둔 받아도 의치한 안됩니다 우리 억울항 서울분들 5
지둔 그정도 사기는 아니던데.. 혹시나 해서 내가 지둔때문에 의치한 못간거야! 라고...
-
그것도 자기가 정보력이 있을 때의 얘기긴 함 시대라이브나 인강컨 그리고 중고 거래...
-
소신발언) 0
배고픔
-
와 씹 문제는 ㅈㄴ 쉽긴한데 각주 안준거 ㄹㅈㄷ네 ㅋㅋㅋ
-
"사진 확대하면 조작?"…이재명 2심 판결문에 '패러디 봇물' 3
서울고등법원이 이재명 더불어민주당 대표의 공직선거법 위반 사건 항소심에서 1심...
-
ㅈㄱㄴ
-
이거 기가막힌 풀이 링크같은거나 아시는 분 어제 풀어봣는데 괜찮은거같은데 막상 글로...
-
요즘 고1 학생들 학교에서 문법 처음 나가면 뭐부터 배우나요 그냥 수능 커리큘럼이랑 비슷한가요?
-
그 치과의사가 나랑 같은 아파트 단지드라....
-
언제부터 공부 시작하는 게 적당할까요? 반수라 탐구 할 시간이 부족한데 너무 불안해서요ㅜ
-
절대 내가 틀려서 그런 게 아님
-
서술어의 자릿수만 풀면 화작마렵노 ㅅㅂ
-
81 애매따리라 답답하노 ㅅㅂ
-
쉬는법을 잊엇다 0
얼마전에는 하루종일 침대에잇어도 하루가금방갓는데 이제는 1시간만 시간비어도...
-
[서울신문]“전국 초·중·고교의 ‘일진회’ 회원이 40만명에 이르고, 서울...
-
서울 수도권 대치분당키드들 6년 졸업 해 봤자 서울권 수련병원 or 서울권 일반의...
-
지문 이해 못하는데 문제는 풀리는 상황 극복 어케해요? 1
제목 그대로 지문을 읽으면서 욕할정도로 진짜 이해를 못하는데 이상하게 문제가...
-
평가원 #~#
-
이따보자 3덮 3모 끝나서 스트레스풀 여붕들아
-
국어과외 어칼까 0
3모 40점대인데 3등급 목표래요 패스는 대성밖에 없는데 어떤식으로 가르처야하지.....
-
버리고 갈 데가 없음 지1은 나름 1이긴 했는데 천체도없고 재미도없고 감동도없어서 억지로 했음
-
뭔가 설명을 못 하겠음
-
높으신분들은 학력고사 세대아님? 한 번보는 인생시험에 뭔 원한 있음? 노력으로...
-
학기1/4종료 2
모두 수고하셧습니다
-
그냥 텍스트를 느낀대로 받아들여야지 이상한 생각하면 뇌절함
-
태어날땐가
-
中, 대만 독립분자 신고센터 개설… 대만 “선 넘었다” 반발 5
중국의 대만 담당 기구인 국무원 대만사무판공실이 26일 ‘대만 독립분자 신고센터’를...
-
생윤 노베 48점 10
생윤 개념강의 1주차까지 들었고 작년까지 과탐사문 해서 그런가 지루하고 어렵더라구요...
-
사수를 학교친구들이랑 즐겁게한다 생각하고 ㄱㄱ
-
문제인듯 ㄹㅇ
-
아 나도 수성구 갓반고 쓰지 말고 서구나 북구 일반고 쓸걸 그랬네 1
괜히 전국적으로 유명한 모 고등학교를 가서 내신이 5점 후반이 돼가지고 내신...
-
중학교 논증기하 파면 팔수록 왜 이렇게 어려워짐? 경시대회 문제 정복해야겠습니다
-
뭐가 저렇냐
-
요즘 하루에 2시간 자면 신체에 어떤 변화가 생기는지 실험중임 1
농담이고 최적의 컨디션을 유지하려면 못해도 5시간은 자야됨
-
뭐냐 이게 ㅋㅋㅋㅋㅋㅋ 아 나도 지균 받고 싶다
-
31일부터 접수인데 흠
-
[속보] 당국 “낮 12시 기준 진화율 청송 91%, 영양 95%, 영덕 93%” 3
[속보] 경북 산불 전체 진화율 94% 도달 [속보] 당국 “낮 12시 기준 진화율...
-
언매 85 확통 70 영어 90 세계사 50 사문 42
-
1컷 어느정도일까요? 언매 80점대 후반인데 2려나요 ㅜ.ㅠ 쉽다는 글도 종종...
-
근데 갑자기 0
기하가 왜 유행을 타려고 하는거임?
와 진짜 변곡점 풀이 듣고 방금 머리가 띵 했네요...ㄷㄷ
아무 생각없이 x=2대입하고 구했는데...
솔직히 수학 엄청 자신 있고
잘한다고 생각했는데
이거 보면서 반성하게 되네요...
잘하는 분들은 정말 한계가 없는 것 같습니다..
재밌게 읽고 가요~!

엇,, ㅎㅎ저도 오르비에 수학관련하여 올리시는 글 보면 대단하다고 느껴지는 글이 자주 보입니다. ㅎㅎ
그래도 꽤 긴 글이라 귀찮으셨을 수 있는데 읽어주시고 좋게 반응해주셔서 감사드립니다. :D
서울대생이라니 멋지시네요!!

저는 그래프를 그리면서 문제를 읽는 편이고, 그래프를 그리면 더 가시적으로 보이고, 숨은 조건이 보이기 때문에 그래프를 그리는 게 문제의 시작점이 되어야 하고, 발상은 그래프를 그리다 보면 이해가 깊어지면서 알게 된다는 생각을 가지고 있는데오히려 그래프가 사고를 막을 수 있다는 내용이 (저에게는)신선한 것 같네요!
앞으로도 좋은 글 많이 써주세요~
네네 저도 그래프를 많이 그리는 편입니다! 사실 자극적으로 적으려 본문을 저렇게 적은 거예요,, ㅎㅎ
좋게 읽어주셔서 감사헙니다. 다음에도 또 좋은 글로 찾아오겠습니다!
실전개념없이 처음 기출문제를 풀기 시작할때도 눈풀을 활용해서 체계적인 생각을 하려고 노력해야하나요? 아니면 기출로 처음에는 들이박아본 뒤에 생각하지 못했던 발상, 다양한 풀이의 근거와 실전개념을 습득하고 나서 저런 생각들을 하는 연습을 하는게 효과적일까요? 저는 어쩌다보니 자연스럽게 된거같은데 이제 갓 개념을 떼고 기출로 넘어가는 학생이 이러한 체계적인 눈풀을 하려면 시간이나 스트레스가 좀 있을거 같아서,, 노베이스학생을 과외하는데 어떤타이밍에 이런 생각들을 알려주는게 맞는지 고민되네요..
제 생각은 1회독때는 그냥 부딪혀보고 강의나 해설을 참고해서 풀이의 명확한 근거나 못했던 생각들을 공부해놓고 2회독때 조건을 상세하게 해석하고 설명해보며 기출을 완벽하게 소화하는게 맞지 않나 싶은데 선생님 의견은 어떤지 궁금합니다..ㅎ
학생이 아니라 좀 안좋아하실려나 했지만 평소에 좋은글들에 영감도 많이 받고 항상 많이 배우는거 같아감사인사할겸 여쭤봅니다! 존경합니다 행님 ㅎ
안녕하세요
만약 학생이 독학이라면 당연히 처음부터 체계적인 생각은 불가능할 겁니다.
수능수학에서 풀이는 계발하는 것이 아니라 이미 존재하는 풀이를 학습하고 문제에 적용시키는 게 올바른 방법이라고 생각합니다.
노베학생의 경우 본인이 스스로 생각하는 시간을 주는 것보다 올바른 방향성을 보여주고 그대로 학습하도록 지도하는 것이 올바른 방법이라고 생각합니다.
물론 선생님께서 올바르게 잘 지도해주실테니 말씀하신 우선 부딪히고 2회독 때 상세하게 해석하는 방향으로 지도하시는 것도 관점에 따라 올바를 수 있습니다.
다만 선생님이 감각적으로 익힌 것처럼 모든 학생들이 할 수 있을 가능성이 높진 않아보이니 감각적인 부분을 직접적으로 보여주심이 어떨까라는 조심스러운 생각을 해봅니다 ㅎㅎ