이차함수 공통접선과 확장
게시글 주소: https://orbi.kr/00068696503
오랜만에 오르비 들어와서 눈팅이나 좀 하다가
수학 질문글을 발견했습니다.
질문은 아래와 같습니다.
(원본링크는 댓글에 있어요.)
아래 그림과 같이 교점이 없고 최고차 부호 다른 두 이차함수에 대해 반드시 두 개의 공통접선이 존재하냐는 겁니다.
여러분은 어떻게 생각하시나요?
다른 좋은 방법도 많겠다만...
질문을 보자마자 제가 떠올린 건 차이함수입니다.
저 그림은 사실,
이거랑 똑같은 그림이에요.
"이거"가 뭐냐면 축이 일치되어 있고 부호는 다른 이차함수입니다.
이 경우에는 당연히 접선 두 개 날릴 수 있겠죠.
그림이 선대칭이므로 한쪽에 그을 수 있다면
그 반대편에도 똑같이 그을 수 있으니까요.
두 접선은 기울기의 절댓값도 같을 겁니다.
그럼 요지는 이겁니다.
왜 질문자의 그림이 위 그림으로 바뀔 수 있는 것일까요?
어... 답은 되게 간단한데요,
그냥 그림의 모든 함수에다가 적절한 일차함수를 빼줘서
축을 움직여가지고 반드시 일치시킬 수 있기 때문입니다.
근데 그림의 모든 함수에 적절한 일차함수를 뺀다는 게 도대체 무슨 말일까요?
아래 평가원 기출 문제를 보겠습니다.
일단 문제상황을 그려보면 다음과 같습니다.
근데 여기 보이는 모든 함수에다가 y=ax를 뺄거에요.
이때 중요한 점은, 교점의 x좌표들이 모두 유지된다는 것입니다.
왜일까요?
방정식의 관점에서 보면 그 답을 쉽게 찾을 수 있습니다.
방정식 f(x)=ax+b의 해를 구하나,
방정식 f(x)-ax= b의 해를 구하나
당연히 똑같은 해가 나올 겁니다.
두 접선이 만나는 점의 x좌표, 즉 k는 왜 유지되는지도 볼까요?
왼쪽 빨간색 접선 식을 mx+n, 오른쪽 접선 식을 px+q라 할게요.
그러면...
위를 계산하나 아래를 계산하나 해는 똑같겠죠.
그래서 전체 그림에 동일한 함수를 빼도 x좌표는 유지가 되는 겁니다.
그래서 한 번 빼볼게요.
그럼 이렇게 나올 겁니다.
사차함수가 선대칭이므로 k는 아무 계산 없이 1/2이라는 걸 알 수 있어요.
전체 그림에 함수를 "빼는" 것만 가능한가요?
아니요!
전체 그림에 함수를 나눌 수도 있습니다.
이미 여러분들이 아주 많이 쓰고 있는 스킬이에요.
궁금한 분들은 아래 링크를 타고 들어가시면 됩니다.
아 가기 전에 좋아요는 누르고 가주세요!!!
도움이 됐다면요.
#무민
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
말그대로임
-
서경대 중국어 어학특기자 전형 준비 중인데 2명만 뽑더라고요 최저 맞춘 사람 중에...
-
1. 컨텐츠 고민 x 뭐 풀지 고민 안 해도 됨! 2. 재밌다 3. 표점이 물1보다...
-
애니캐릭터들의 해설강의
-
예상 1컷 좀 알려주세요 저는 등급컷 잘 못 맞춰서요
-
ㅠㅠ
-
누가 사라지는지 확인하려면.... 그 방법밖에 없는데
-
소요 시간 72분 93점(독서 -5 문학 -2) 난이도는 6모랑 대비해서 독서는...
-
빡집중해서 이해할거 다 이해하고 들으면 걍 반나절 순삭되는데..너무 오래걸리나
-
해명합니다 4
달암합니다 ㅋㅋ
-
바로 나 ㄱㄴㄷ 문제 보면 뇌가 겁을 잔뜩 먹어서 머리가 안돌아감...
-
국어 5 수학 4 영어 3 사회 3 과학 2 한국사3 국어,수학은 기말때 너무...
-
오르비 on
-
차단목록 +1
-
이제 국어수학 배분 칼각잡았으니 학습효율늘려야징
-
웃통 벗고 동생 옆에서 오르비 중 백수 그 자체
-
뭐 누구를 무시하거나 제가 1등급을 받을 수 있다는 건 아닌데 아무래도 영어가...
-
실모 케이스 하나 살까 하다가 메가스터디 택배 봉투가 짱짱하길래 그 위에 종이 봉투 붙여서 완성함
질문자 원본 글입니다.
https://orbi.kr/00068687892
정시의벽이 쏘아올린 공
ㄷㄷ닉언
캬ㅑㅑㅑ무민 님ㄷㄷㄷ