서울시교육청은절댓값을좋아하는거같아요
게시글 주소: https://orbi.kr/00072556790
슬슬 3모 시즌 아닌가 하고 일정을 알아봤더니 3일 뒤인 3/26일이 시험이더라구요
서울특별시 교육청에서 주관하는 시험입니다.
현 수능 체제에서 한 해도 빠짐없이 3모 22번에는 절댓값을 이용한 문제가 나왔어요.
한 번 비주얼만 쭉 확인해볼게요.
2024년
2023년
2022년
2021년
이렇게 쭉 모아보니 정말 절댓값을 가지고 계속 문제를 만들고 있죠.
그래서 3일 뒤에도 22번에 절댓값이 나온다? 함부로 그런 예측을 하고 있는 것은 아닙니다.
작년 수능 22번에 수열이 나왔으니 더더욱 모르는 일이구요.
다만 이번 기회에 절댓값에 대해 팁을 드릴까합니다. 워낙 자주 나오는 주제인만큼요.
두 개의 팁을 드릴건데요,
1번은 초급자용이고 2번은 잘하는 분들도 배울 점이 있을 겁니다.
1. 절댓값이 포함된 극한
누구나 바로 납득할 수 있는 사실부터 시작해볼게요.
다항함수 f(x)에 대해 다음 극한값이 존재합니다.
f(x)는 (x-a)를 몇 개 가지고 있어야 할까요?
만약 f(x)가 x-a를 하나만 가졌다면
뭐 이런 식으로 표현할 수 있을텐데요 (단, p(a)는 0이 아님)
이때 p(x)앞에 있는
이 놈이 a 좌우로 값이 바뀌어버리는 트롤을 해버립니다.
a 왼쪽에서는 -1 이었다가, a 오른쪽부턴 1이죠.
그래서 f(x)한테 x-a를 하나 더 줘버려서, 최종 극한값을 0으로 만들어버려야 합니다.
다음 예시로 넘어갈게요.
얘는 어떨까요? 이 경우에는 3개가 필요할까요?
그렇지 않습니다.
x-a 제곱은 원래 항상 0이상인 놈이라, 절댓값을 붙이든 말든 의미가 없죠.
따라서 f(x)는 x-a 인수 2개만 가지고 있어도 충분합니다.
이 경우에는 x-a 인수 4개가 필요하겠네요.
3개만 있다면, 아까 예시처럼 x=a 좌우로 -1, 1이 바뀌어버리는 트롤을 합니다.
이 경우에도 x-a 인수 4개가 필요합니다. 절댓값이 있으나 마나죠.
이쯤이면 정리가 되셨을 것 같습니다.
이런 것들을 외우고 있다기보단 그냥 자연스럽게 떠올릴 수 있어야 합니다.
꼭 이런 꼴이 아니더라도 절댓값이 포함된 식은 어떻게든 작성될 수 있거든요.
아래 예제 문제 보겠습니다.
(가) 조건부터 해석해봅시다.
약간의 변형을 해주면...
이런 꼴이 되죠.
이번엔 f(x)가 x를 인수로 몇 개 가지고 있어야 할까요?
한개만 가지고 있어도 충분할 겁니다. f(x)=x라고 해보면, xf(x)는 x제곱이 되죠. 절댓값 풀어도 됩니다.
당연히 두 개 이상 가질 때에도 문제 없습니다.
이제 (나)조건을 보면, g(x) 미불점을 하나 만들어줘야 합니다.
일단 f(x)를 아무렇게나 그려보고, 문제점을 찾아봅시다.
일단 x=0에서는 문제가 없습니다. (가)조건 볼 때 이미 확인했죠.
반면 그 외의 두 근에서는... 둘 다 문제가 생깁니다.
f(x)가 근을 가지는 곳마다 g(x)가 미불이 되어버리죠. (0 빼고요.)
수정이 필요해보입니다.
그래서 0이외의 두 근을 중근으로 만들어줬더니, 이번엔 또다른 문제가 생깁니다.
이번엔 g(x)가 미불인 곳이 아예 없겠죠. 다른 경우를 떠올려야 합니다.
이처럼 0 중근 + 나머지 한 근으로 그린다면?
(가) (나) 조건 둘 다 충족합니다.
0에서 중근이어야 하는 이유는 (가)조건 때문이 아니라, (나) 조건 때문이라는 걸 이해하셔야 합니다.
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요.
위 그림처럼
f(x)=(x-1)(x-1)(x-3) 을 생각해보면...
g(x)는 x=0에서 문제가 생기고, x=3에서도 문제가 생기네요.
포인트는, x=0 이외 구간에서는 전혀 문제가 없게 해줘야 합니다.
이러면 좋을 것 같네요.
삼중근을 줘버렸습니다.
답은 이렇게 2개입니다.
2. 절댓값이 포함된 함수 그리기
위 조건을 가지고 f(x)를 그려야 하는 상황입니다.
수식적으로 열심히 미분하고 이거저거 해도 괜찮지만...
사실 그림 몇 개만 슥슥 그려서 끝낼 수 있어요.
일단 왼쪽부터 그려봅시다.
x가 절댓값 밖에 있는 게 거슬리네요.
이때 삼차함수의 절댓값함수를 그린 뒤에 x를 곱해야겠다고 생각하지 마세요.
절댓값은 무시한 채로 일단
이 놈을 그린 뒤에, 부호만 따로 처리해주는겁니다.
이렇게요.
삼차함수가 x가 0보다 작은 곳에서만 뒤집어졌으니까,
전체 함수도 x가 0보다 작은 곳에서만 뒤집어주면 되겠죠.
지금까지 왼쪽 함수를 그렸습니다.
우린 f(x)가 궁금한거니까 양변을 미분 해야겠죠?
근데 수식적으로 가지 않을 겁니다.
왼쪽함수를 미분해줄 때 역시 그림만 보고 바로 도함수를 그릴 수 있습니다.
이렇게 되겠죠.
0, a, 2a 에서 x축 지나는 삼차함수 그린 뒤에 x가 음수인 부분만 뒤집어 준 셈입니다.
이걸 미분해서 아는 게 아니라, 그림 보면서 바로 그리는거에요.
이때 이 도함수의 최고차항 계수는 4배가 됨을 잊지 마세요.
사차함수 미분했으니 계수 쪽으로 4가 튀어나왔겠죠.
지금 그린 이 함수가
이 놈입니다. 왜냐면...
여기서 우변을 미분하면 (a-x) f(x)가 나오니까요.
그럼 아까 구한 그림
이 놈에서 (a-x)를 나눠준 그림이 f(x)겠죠.
(a-x)를 나누는게 헷갈리신다면,
(x-a)를 나눈 다음에, -부호 처리(함수를 x축 대칭) 해도 되겠습니다.
저는 방금 말한 방법으로 보여드릴게요.
우선 x-a로 나누면
이렇게 되겠죠.
이제 뒤집을게요.
드디어 f(x)를 그렸습니다.
이런 식으로 그림을 통해 바로 미분을 하고, 인수를 나누고, 절댓값 처리를 하고, 적분도 할 수 있어요.
익숙해진다면 정말 빨라질 겁니다.
절댓값이 있더라도 제가 방금 보여드린 것처럼 하면 됩니다.
참고로 이 문제는 2022년 3월 22번이었습니다.
저는 다음에 또 좋은 칼럼으로 찾아뵙겠습니다. 감사합니다.
#무민
0 XDK (+100,000)
-
100,000
-
!!
-
국어 과탐 중에 뭘까
-
갑자기 왜 0.2a+400인거죠?
-
스나이퍼 후기 2
설의에 오류가..!
-
수량이 적어…
-
6평 백분위 99였고(9평 현장 미응시) 더프나 서프 등 비교적 큰 단위가 보는...
-
수학 ox퀴즈 1
좌표평면 위에 세 꼭짓점의 좌표가 모두 정수인 정삼각형이 존재가능하다
-
메가스터디학원 ❄️겨울방학 학습전략 설명회❄️ 개최 (10월 25일 토요일, 오후 2시) 1
※ 사진 클릭 시, 설명회 페이지로 이동합니다. ✅ 일시 2025년 10월...
-
지난달이 살짝 특이케이스긴 한데 아무튼.. 아 맞다 용돈 제외임 뭐 많은 사람들한테...
-
3,4등급 왔다갔다 하는 학생이고 수능날 영어 목표 등급은 3입니다 현재까지...
-
과탐 실모를 대따 많이 풀까.. 아님 수학 N제를 다 풀까 아님 국어 주간지 밀린거를 다 풀까
-
?수능 국어 교재 인력풀 모집: (⭐재택근무⭐) 기출 정리 / 한글 조판 / 집필 (대학생·강사님 모두환영합니다) 0
안녕하세요! 국어 교재 콘텐츠 기획 전문가 한은영입니다. 출판사·학원·인강 등에...
-
표점/백분위 혹시 몇이나 나오나요 성적표를 못받았는데 궁금하네요
-
폐에 유리조각 박히고 코 타는 듯이 아프잖음? 하루종일 그상태임 감기 나흘차
-
1번문제에 보어 모형에서 원자의 선 스펙트럼을 설명할 수 있다 가 나왔는데 원자가...
-
서울 임금 476만원 받을때 제주 327만원…일자리 양극화 더 심해졌네 1
IT·금융 일자리 서울에 집중 서울의 1인당 임금액이 476만5000원을 기록했다....
-
정청래 “교사 정치주권 보장”…교사 정치 참여 길 열리나? 3
[KBS 광주] [앵커] 정청래 더불어민주당 대표가 교사들의 정치 참여를 보장하는...
-
학교에선 국어-무제 하루치, 강E분 2지문, 강평업 강의 1개 수학-N제 10문제...
-
체력측정 잘하면 뭐하노;;
-
그 시간에 꿀잠자기
-
고난도 실?전모의 + 해설강의 + 수능국어 기본이론정리 한번에 무료특강 듣기 ->...
-
풍선내부 중심점. 우리가 사는 공간(3차원)이 풍선표면(2차원)이라면 우주의 중심은...
-
갑종님은 실전 모의고사를 출제하기 위해 교수들을 감금한 적 있음 7
지금에서야 우리는 이걸 수능이라고 부름
-
술 마시다가 미적분 문제를 하나 보여준적이 있다 걍 만든거라고 보여준다음 바로...
-
아빠엄마나707707 생일 끝자리081828 ㅋㅋ
-
드릴 본체는 3
적분인 듯 ㄹㅇ
-
날씨가 딱 2
낮잠 자기 좋을 날씨
-
아수라 본교재만 0
구해서 강의만 듣고 다른 주간지 풀어도 될려나요 올오카 TIM 듣고 난후로는 이매진...
-
숏츠형 문학 0
숏폼 대신 한강 작가님의 흰 읽고 문학 만점 쟁취하자
-
풀어보신 분? 이때까지 친 모고 중에 제일 어려운 듯 ㄹㅇ
-
수업 노잼 2
딴짓하기
-
Ex:갑종배당소득세는 수능수학 공부한지 몇달만에 스스로 다항함수의 비율관계를...
-
작수 언매 악명높기로 유명한데 자기 리스크 감수하고 응시해서 성적표 보여주는 사람...
-
님들 이번에 9평 지구1 평균이랑 등급 몇떴나요?? 0
지구구평평균점수랑 지구구평평균등급대 아시는 분 있으면 알려주세요..
-
시발점 쎈으로 6모 92 받고 독재까지가서 뉴런에 좋다는 입문n제도 다풀고 드릴까지...
-
9모도 다맞으신듯 작수 언매 80분안에 다풀고 2회독차 종료령 언매 100…....
-
문제는 아니고 수능영어관련해서 하나 물어볼게 있어서요 사례도 간단하게 해드릴게요 댓글남겨주세요
-
EBS 미친놈들 3
이게 10번인게 말이되냐? 실모를 누가 이따구로 내
-
저번에 만났을때 한문제 검토해달라고 가져간적 있었음 그니까 풀지는 않고 2분정도...
-
언매 질문이요! 0
옛날, 그동안과 같이 명사들이 부사어처럼 쓰이던데 원래 명사들이 부사어로 쓰이는...
-
한 칸이 사용중일 확률이 2/3이어도 (2/3)^8 = 256/6561 ≈ 3% 이걸뚫네
-
저정도면 최저맞추면 의논 다씹을거같은데 ㄹㅇ
-
교육과정에 나온 고1개념이 앞뒤랑 안맞는경우도있고 유기적으로연결될때도있고 정확히...
-
사설이든 평가원이든 편차가 많이 줄음 작년엔 3등급 꽤 많았는데 올해는 현장기준...
-
Ex: 갑종배당소득세는 231122를 현장에서 식 1줄로 끝냈다
-
기출코드 0
추석동안 한권 끝내는용으로 어떤가요? 현역이고 낮3정도 뜹니다
-
평가원 첫 수학 2등급이네요. 그래도, 잘 할 거란거 믿고 있으니깐.. 2506...
-
다 풀어주마 으하하
첫 댓 빌립니다. 그동안 올린 모든 칼럼을 확인하고 싶으시다면
https://orbi.kr/00064989284/%EA%B7%B8%EB
로 이동하세요!
그럼 3모 22번은 절댓값 수열이네요
ㄷㄷ
좋은 글 감사합니다

절대값에 대해서 다시 한 번 생각해 봤어ㅇ ㅛ
ㅋㅋㅋ 감상평까지 적어주시고 감사합니다! ㅎㅎ두번째 그래프는 x가 분모가 있는데 g(x)가 0에서 정의가 되나요??
x=0인 상황은 양변을 x로 나누기 전에 봐야된건가요?
아마 연속인거 생각하고 만든거같음
x가 0일때 g(x)랑, x가 0이 아닐 때 g(x)로 나눠야 합니다.
다만 전자 케이스에 대해서는 굳이 더 볼 게 없습니다.
만약 x=0에서 미불이라면, 연속일 필요도 없으니까 아무렇게나 g(0)값을 잡으면 되구요
x=0에서 미가라면, 내가 연속 조건을 맞춰주기만 한다면 미가는 알아서 맞춰져있을테니 문제가 없습니다.
"알아서 맞춰져있을테니"에 대해 더 설명을 드리자면
f(x)가 사진과 같을 때 g(x)는 어떤지 생각해보겠습니다. xf(x)=x제곱 (x-3)제곱 같은 함수이고, 절댓값은 의미가 없죠. 그 다음에 x로 나누면 g(x)=x(x-3)제곱 을 구할 수 있습니다.
조심해야 할 건, 이건 x가 0이 아닐 때의 g(x) 식인겁니다.
그럼 g(0)=0이라고 설정해주기만 하면, 실수 전체 범위에서 g(x)를 미가로 정의할 수 있겠죠. 0에서 문제가 없게 잘 설정해줬으니까요.
이제 답이 되는 f(x)에 대해서도 직접 이걸 해보시면 됩니다. x=0일때는 따로 긴 계산할 것 없이, 알아서 맞출 수 있는 g(0) 함숫값이 존재한다는 걸 느끼면 됩니다
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요. 부분에서
f(x) 그래프가 x=0을 지나지 않는 이유가 뭔가요?
(가)에서 f(x)는 x=0을 인수로 가진다는 결론을 도출하지 않았나요?
x=0에서 g(x)가 문제가 안 생기게 하려면, f(x)가 x=0 인수를 가져야 한다는 뜻입니다.
이후에 새로운 접근에서는, 아 애초에 x=0을 문제되는 포인트로 만들어줘도 되겠구나 라는 시각에서 접근한 것입니다.
사실 문제를 완전히 정갈하게 풀려면, 처음부터 이걸 나눴어야 했습니다.
1. g(x) 미불점이 x=0일때
2. g(x) 미불점이 x=0이 아닐 때
하지만 저는 시행착오를 겪어가며 문제를 푸는 과정을 보여드리고 싶어서 일부러 이렇게 했습니다. 의문점이 아직 남아있다면 편하게 다시 질문해주세요! ㅎㅎ
선생님 정말 감사합니다. 선생님 답변은 이해했습니다.
근데 x=0에서 g(x)가 미분 가능하려면, f(x)가 x=0 인수를 가져야 한다는 게 이해가 잘 안갑니다.
전 그림이랑 식을 통해, g(x)는 x=0-에서 -|f(x)|이고
x=0+에서 |f(x)|가 나오니 x=0에서 미분 가능이라고 판단했는데.
(가)식만 보고 f(x)가 x=0에서 인수를 하나 이상 가지면 g(x)가 x=0에서 미분가능하다는 논리가 이해가 안됩니다.
질문 너무 많이 해서 죄송합니다.
그림 그리기 전에 어떻게 식만 보고 파악할 수 있는지를 물어본 거네요. 너무 좋은 질문이에요!!
f(x)가 x를 하나 가지고 있다면, 절댓값 안에 들어있는 xf(x)는 x를 두 개 가진 셈이에요. x를 두 개 가졌다면, x=0 근처에서 부호가 뒤집히지 않겠죠? 절댓값 x제곱을 생각하셔도 되고, 절댓값 x제곱 (x-3) 같은 걸 생각하셔도 돼요.
결국 g(x)가 미불이 되려면 뾰족하게 뒤집혀야 하는데, f(x)에다가 x를 하나만 줘도 애초에 뒤집히지를 않으니 문제가 없는 겁니다!
참고로 f(x)에 x 인수를 2개준다면, 즉 xf(x)가 x 인수를 3개 가진다면 0 좌우로 부호가 뒤집히긴 하지만, 미계가 0이라서 뒤집혀도 여전히 미분가능인 것입니다
가형시절 3모 14번 개레전드였었는데
14번이 이정도수준인가 하고 좌절했었는데
대 무 민

오랜만이네요10모도 그런가요
3모 10모 출제진이 다른가
10모 22는 21년만 절댓값 들어가있네요

현여기 22번 꼭 맞추겠습니다
혀녀기 파이팅입니다늘 감사합니다

저야말로 감사합니다 ㅎㅎ 오랜만에 뵙네요다 아는 내용인데 리마인드 하니까 새롭네요 항상 잘 보고 있습니다 :)
성지순례왔습니다ㅋㅋ
진짜 나올줄은 ㅋㅌㅋㅋ
이거 다 읽고 이해 다 했는데 틀렸어용ㅎㅎ