서울시교육청은절댓값을좋아하는거같아요
게시글 주소: https://orbi.kr/00072556790
슬슬 3모 시즌 아닌가 하고 일정을 알아봤더니 3일 뒤인 3/26일이 시험이더라구요
서울특별시 교육청에서 주관하는 시험입니다.

현 수능 체제에서 한 해도 빠짐없이 3모 22번에는 절댓값을 이용한 문제가 나왔어요.
한 번 비주얼만 쭉 확인해볼게요.
2024년

2023년

2022년

2021년

이렇게 쭉 모아보니 정말 절댓값을 가지고 계속 문제를 만들고 있죠.
그래서 3일 뒤에도 22번에 절댓값이 나온다? 함부로 그런 예측을 하고 있는 것은 아닙니다.
작년 수능 22번에 수열이 나왔으니 더더욱 모르는 일이구요.
다만 이번 기회에 절댓값에 대해 팁을 드릴까합니다. 워낙 자주 나오는 주제인만큼요.
두 개의 팁을 드릴건데요,
1번은 초급자용이고 2번은 잘하는 분들도 배울 점이 있을 겁니다.
1. 절댓값이 포함된 극한
누구나 바로 납득할 수 있는 사실부터 시작해볼게요.

다항함수 f(x)에 대해 다음 극한값이 존재합니다.
f(x)는 (x-a)를 몇 개 가지고 있어야 할까요?
만약 f(x)가 x-a를 하나만 가졌다면

뭐 이런 식으로 표현할 수 있을텐데요 (단, p(a)는 0이 아님)
이때 p(x)앞에 있는

이 놈이 a 좌우로 값이 바뀌어버리는 트롤을 해버립니다.
a 왼쪽에서는 -1 이었다가, a 오른쪽부턴 1이죠.
그래서 f(x)한테 x-a를 하나 더 줘버려서, 최종 극한값을 0으로 만들어버려야 합니다.

다음 예시로 넘어갈게요.

얘는 어떨까요? 이 경우에는 3개가 필요할까요?
그렇지 않습니다.
x-a 제곱은 원래 항상 0이상인 놈이라, 절댓값을 붙이든 말든 의미가 없죠.

따라서 f(x)는 x-a 인수 2개만 가지고 있어도 충분합니다.

이 경우에는 x-a 인수 4개가 필요하겠네요.
3개만 있다면, 아까 예시처럼 x=a 좌우로 -1, 1이 바뀌어버리는 트롤을 합니다.

이 경우에도 x-a 인수 4개가 필요합니다. 절댓값이 있으나 마나죠.
이쯤이면 정리가 되셨을 것 같습니다.
이런 것들을 외우고 있다기보단 그냥 자연스럽게 떠올릴 수 있어야 합니다.
꼭 이런 꼴이 아니더라도 절댓값이 포함된 식은 어떻게든 작성될 수 있거든요.
아래 예제 문제 보겠습니다.

(가) 조건부터 해석해봅시다.
약간의 변형을 해주면...

이런 꼴이 되죠.
이번엔 f(x)가 x를 인수로 몇 개 가지고 있어야 할까요?
한개만 가지고 있어도 충분할 겁니다. f(x)=x라고 해보면, xf(x)는 x제곱이 되죠. 절댓값 풀어도 됩니다.
당연히 두 개 이상 가질 때에도 문제 없습니다.
이제 (나)조건을 보면, g(x) 미불점을 하나 만들어줘야 합니다.
일단 f(x)를 아무렇게나 그려보고, 문제점을 찾아봅시다.

일단 x=0에서는 문제가 없습니다. (가)조건 볼 때 이미 확인했죠.
반면 그 외의 두 근에서는... 둘 다 문제가 생깁니다.

f(x)가 근을 가지는 곳마다 g(x)가 미불이 되어버리죠. (0 빼고요.)
수정이 필요해보입니다.

그래서 0이외의 두 근을 중근으로 만들어줬더니, 이번엔 또다른 문제가 생깁니다.

이번엔 g(x)가 미불인 곳이 아예 없겠죠. 다른 경우를 떠올려야 합니다.

이처럼 0 중근 + 나머지 한 근으로 그린다면?
(가) (나) 조건 둘 다 충족합니다.
0에서 중근이어야 하는 이유는 (가)조건 때문이 아니라, (나) 조건 때문이라는 걸 이해하셔야 합니다.
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요.

위 그림처럼
f(x)=(x-1)(x-1)(x-3) 을 생각해보면...
g(x)는 x=0에서 문제가 생기고, x=3에서도 문제가 생기네요.
포인트는, x=0 이외 구간에서는 전혀 문제가 없게 해줘야 합니다.

이러면 좋을 것 같네요.
삼중근을 줘버렸습니다.
답은 이렇게 2개입니다.
2. 절댓값이 포함된 함수 그리기

위 조건을 가지고 f(x)를 그려야 하는 상황입니다.
수식적으로 열심히 미분하고 이거저거 해도 괜찮지만...
사실 그림 몇 개만 슥슥 그려서 끝낼 수 있어요.
일단 왼쪽부터 그려봅시다.

x가 절댓값 밖에 있는 게 거슬리네요.
이때 삼차함수의 절댓값함수를 그린 뒤에 x를 곱해야겠다고 생각하지 마세요.
절댓값은 무시한 채로 일단

이 놈을 그린 뒤에, 부호만 따로 처리해주는겁니다.

이렇게요.
삼차함수가 x가 0보다 작은 곳에서만 뒤집어졌으니까,
전체 함수도 x가 0보다 작은 곳에서만 뒤집어주면 되겠죠.

지금까지 왼쪽 함수를 그렸습니다.
우린 f(x)가 궁금한거니까 양변을 미분 해야겠죠?
근데 수식적으로 가지 않을 겁니다.

왼쪽함수를 미분해줄 때 역시 그림만 보고 바로 도함수를 그릴 수 있습니다.

이렇게 되겠죠.
0, a, 2a 에서 x축 지나는 삼차함수 그린 뒤에 x가 음수인 부분만 뒤집어 준 셈입니다.
이걸 미분해서 아는 게 아니라, 그림 보면서 바로 그리는거에요.
이때 이 도함수의 최고차항 계수는 4배가 됨을 잊지 마세요.
사차함수 미분했으니 계수 쪽으로 4가 튀어나왔겠죠.
지금 그린 이 함수가 
이 놈입니다. 왜냐면...

여기서 우변을 미분하면 (a-x) f(x)가 나오니까요.
그럼 아까 구한 그림

이 놈에서 (a-x)를 나눠준 그림이 f(x)겠죠.
(a-x)를 나누는게 헷갈리신다면,
(x-a)를 나눈 다음에, -부호 처리(함수를 x축 대칭) 해도 되겠습니다.
저는 방금 말한 방법으로 보여드릴게요.
우선 x-a로 나누면

이렇게 되겠죠.
이제 뒤집을게요.

드디어 f(x)를 그렸습니다.
이런 식으로 그림을 통해 바로 미분을 하고, 인수를 나누고, 절댓값 처리를 하고, 적분도 할 수 있어요.
익숙해진다면 정말 빨라질 겁니다.
절댓값이 있더라도 제가 방금 보여드린 것처럼 하면 됩니다.
참고로 이 문제는 2022년 3월 22번이었습니다.
저는 다음에 또 좋은 칼럼으로 찾아뵙겠습니다. 감사합니다.
#무민
0 XDK (+100,000)
-
100,000
-
올해 문학 연계 뭐 잇엇지 1 0
사설에서 질리도록 봤던 거 하나 나왔던 거 같은데 먼지 기억이 안 나네
-
ㅇㅈ 4 0
찐막
-
진짜 트런들 닮앗네 2 0
눈마저
-
눈 8 0
이젠리스크가잇거든
-
하 개폐급인생 2 0
생활패턴 어카지 진짜 내일부턴 다시 12시에 짐
-
마크 아무도 안 오네 1 0
ㅋㅋㅋ 시간이 너무 늦었나 근데 나랑 생활패턴 맞는 사람위주로 하고싶은데
-
아닌데 정말 아닌데 마음속으로는 나는 여기 머무를 점수 아니라고 수도없이 되뇌었지만...
-
자야지 3 0
굿밤
-
잠안와서 공통21번 풀어봄 0 0
현장에서 풀었으면 이거 풀고 22번부터 다 찍었을듯
-
내 3월 공부량 4 0
공부한거 다 기록한거 맞음
-
구시발점 들었는데 개정시발점 0 0
꼭 듣고 나서 수분감 뉴런 가야되나요?? 당연히 새교육과정 2022에...
-
친구여 세월이 많이 지낫구려 0 0
같이 늙어간단 말이 내게는 그저 먼 미래의 일일 뿐이엿는데
-
6~9때는 다양하게 뜨는데 지방한도 뜨고 보통 수능보다는 훨씬 잘 뜸 근데 그해...
-
갑자기 화나네 0 0
수능 좆박아서 애들 다 놀때 나만 처 수능끝나고 부터 지금까지 논술 뺑이 치고 잇음 하
-
난 돈 많이 안벌고 싶음 6 0
이새낀 삶이 안정적이면 게을러질것 같음 도스토옙스키마냥 돈 좀 생기면 도박...
-
갤러리 뒤지다가 5 0
머있으면올려야지 인증은안험
-
현실적으로 어디 가능함요? 백분위는 74 93 2 90 99 화작 기하 물2 생2 입니당
-
경찰 신고해야하나 10 0
아까전부터 어떤 미친놈이 쾅쾅거리는 소리랑 애 우는소리가 계속 들리는데 지금은...
-
사평우 근본 없는데 10 0
사랑과평화우정 이건 무려 내 세번째 닉임 심지어 사평우 이건 한 15번째 정도 됨
-
매일 고민이네 14 1
천문 가고싶긴한데 현실적으로 힘들거겉음 으대라고 안 힘든 건 아니지만 천문학자는...
-
다 죽엇어 2 0
-
마크할 사람 구함 2 0
자바에디션 렐름으로 하는거고 이게 아마 동접이 10명 제한이고 초대는 무제한이던가...
-
7일뒤에 닉변인데 5 1
닉변 안해야지
-
ㅅㅂ 내일 논술인데 0 0
잘자고 있었는데 우리집 ㅈ냥이 때문에 잠 깜 야발
-
삼수선언문 1 1
뭐라쳐야나옴
-
쓸 글이 없네 7 0
ㅏ
-
슬슬 리젠 좃됏네 7 2
서은현 출격
-
새르비 념글컷 왤케 높음? 5 1
16좋 이륙대기가 말이되나
-
옛날엔 얘 좋으했음 14 3
기여움
-
저랑 9 1
인스타맞팔하실분근데본계이자부계이자비계임
-
부모님께 큰 절 하고 2 0
대문 밖을 나설 때
-
그때 걍 갈껄;
-
나 어제 킨드레드 만남 3 0
ㄹㅇ
-
국어 17번 오류 인정 뭐임? 13 0
https://orbi.kr/00075745846 오랜만에 쓴 칼럼인데 개추좀..
-
휴르비가 아니라 탈르비잖아 3 0
이런;
-
그립습니다.. 2 1
..
-
주인 잃은 레어 3개의 경매가 곧 시작됩니다. 밤의 카페 테라스"빈센트 반 고흐의...
-
걍 동반입대하면 되는거 아님? 나라면 그럴듯
-
굿모닝 굿애프터눈 굿나잇 1 0
굿나잇
-
슬슬 휴르비 하께 5 1
한동안 입시는 신경꺼야겠다 원서 쓸 때 오께 바이바이
-
하 운동을 햇어야 햇는데 0 0
낮에 팔굽혀펴기 10개 했더니 아직도 아픔 팔 가슴 배 다 아픔
-
중간 행사때 받아먹엇엇는데 카페인 양이 ㄹㅇ
-
솔직히 이제 남친 6 3
사귀고 싶음
-
솔직히 이제 여친은 3 0
슬슬 사귀기 무서워짐 또 성격 야랄 나잇으면 어캄
-
내가왜성인임 2 1
내가왜성인이야
-
근데 나 여르비임 9 0
ㅇㅇ
-
여행계획을 크게 다 짰다 0 0
역시 씹덕 여행답게 교통비와 숙소가 예산의 반 티켓과 굿즈가 40퍼 남은 10퍼가...
-
나랑 사귀어죠 4 0
-
바지 머사지 2 0
워싱 빢빢 들어간 거 vs 밋밋한거
-
자헨 졸라 쎄네 4 0
스토리 머임
첫 댓 빌립니다. 그동안 올린 모든 칼럼을 확인하고 싶으시다면
https://orbi.kr/00064989284/%EA%B7%B8%EB
로 이동하세요!
그럼 3모 22번은 절댓값 수열이네요
ㄷㄷ
좋은 글 감사합니다

절대값에 대해서 다시 한 번 생각해 봤어ㅇ ㅛ
ㅋㅋㅋ 감상평까지 적어주시고 감사합니다! ㅎㅎ두번째 그래프는 x가 분모가 있는데 g(x)가 0에서 정의가 되나요??
x=0인 상황은 양변을 x로 나누기 전에 봐야된건가요?
아마 연속인거 생각하고 만든거같음
x가 0일때 g(x)랑, x가 0이 아닐 때 g(x)로 나눠야 합니다.
다만 전자 케이스에 대해서는 굳이 더 볼 게 없습니다.
만약 x=0에서 미불이라면, 연속일 필요도 없으니까 아무렇게나 g(0)값을 잡으면 되구요
x=0에서 미가라면, 내가 연속 조건을 맞춰주기만 한다면 미가는 알아서 맞춰져있을테니 문제가 없습니다.
"알아서 맞춰져있을테니"에 대해 더 설명을 드리자면
f(x)가 사진과 같을 때 g(x)는 어떤지 생각해보겠습니다. xf(x)=x제곱 (x-3)제곱 같은 함수이고, 절댓값은 의미가 없죠. 그 다음에 x로 나누면 g(x)=x(x-3)제곱 을 구할 수 있습니다.
조심해야 할 건, 이건 x가 0이 아닐 때의 g(x) 식인겁니다.
그럼 g(0)=0이라고 설정해주기만 하면, 실수 전체 범위에서 g(x)를 미가로 정의할 수 있겠죠. 0에서 문제가 없게 잘 설정해줬으니까요.
이제 답이 되는 f(x)에 대해서도 직접 이걸 해보시면 됩니다. x=0일때는 따로 긴 계산할 것 없이, 알아서 맞출 수 있는 g(0) 함숫값이 존재한다는 걸 느끼면 됩니다
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요. 부분에서
f(x) 그래프가 x=0을 지나지 않는 이유가 뭔가요?
(가)에서 f(x)는 x=0을 인수로 가진다는 결론을 도출하지 않았나요?
x=0에서 g(x)가 문제가 안 생기게 하려면, f(x)가 x=0 인수를 가져야 한다는 뜻입니다.
이후에 새로운 접근에서는, 아 애초에 x=0을 문제되는 포인트로 만들어줘도 되겠구나 라는 시각에서 접근한 것입니다.
사실 문제를 완전히 정갈하게 풀려면, 처음부터 이걸 나눴어야 했습니다.
1. g(x) 미불점이 x=0일때
2. g(x) 미불점이 x=0이 아닐 때
하지만 저는 시행착오를 겪어가며 문제를 푸는 과정을 보여드리고 싶어서 일부러 이렇게 했습니다. 의문점이 아직 남아있다면 편하게 다시 질문해주세요! ㅎㅎ
선생님 정말 감사합니다. 선생님 답변은 이해했습니다.
근데 x=0에서 g(x)가 미분 가능하려면, f(x)가 x=0 인수를 가져야 한다는 게 이해가 잘 안갑니다.
전 그림이랑 식을 통해, g(x)는 x=0-에서 -|f(x)|이고
x=0+에서 |f(x)|가 나오니 x=0에서 미분 가능이라고 판단했는데.
(가)식만 보고 f(x)가 x=0에서 인수를 하나 이상 가지면 g(x)가 x=0에서 미분가능하다는 논리가 이해가 안됩니다.
질문 너무 많이 해서 죄송합니다.
그림 그리기 전에 어떻게 식만 보고 파악할 수 있는지를 물어본 거네요. 너무 좋은 질문이에요!!
f(x)가 x를 하나 가지고 있다면, 절댓값 안에 들어있는 xf(x)는 x를 두 개 가진 셈이에요. x를 두 개 가졌다면, x=0 근처에서 부호가 뒤집히지 않겠죠? 절댓값 x제곱을 생각하셔도 되고, 절댓값 x제곱 (x-3) 같은 걸 생각하셔도 돼요.
결국 g(x)가 미불이 되려면 뾰족하게 뒤집혀야 하는데, f(x)에다가 x를 하나만 줘도 애초에 뒤집히지를 않으니 문제가 없는 겁니다!
참고로 f(x)에 x 인수를 2개준다면, 즉 xf(x)가 x 인수를 3개 가진다면 0 좌우로 부호가 뒤집히긴 하지만, 미계가 0이라서 뒤집혀도 여전히 미분가능인 것입니다
가형시절 3모 14번 개레전드였었는데
14번이 이정도수준인가 하고 좌절했었는데
대 무 민

오랜만이네요10모도 그런가요
3모 10모 출제진이 다른가
10모 22는 21년만 절댓값 들어가있네요

현여기 22번 꼭 맞추겠습니다
혀녀기 파이팅입니다늘 감사합니다

저야말로 감사합니다 ㅎㅎ 오랜만에 뵙네요다 아는 내용인데 리마인드 하니까 새롭네요 항상 잘 보고 있습니다 :)
성지순례왔습니다ㅋㅋ
진짜 나올줄은 ㅋㅌㅋㅋ
이거 다 읽고 이해 다 했는데 틀렸어용ㅎㅎ