서울시교육청은절댓값을좋아하는거같아요
게시글 주소: https://orbi.kr/00072556790
슬슬 3모 시즌 아닌가 하고 일정을 알아봤더니 3일 뒤인 3/26일이 시험이더라구요
서울특별시 교육청에서 주관하는 시험입니다.

현 수능 체제에서 한 해도 빠짐없이 3모 22번에는 절댓값을 이용한 문제가 나왔어요.
한 번 비주얼만 쭉 확인해볼게요.
2024년

2023년

2022년

2021년

이렇게 쭉 모아보니 정말 절댓값을 가지고 계속 문제를 만들고 있죠.
그래서 3일 뒤에도 22번에 절댓값이 나온다? 함부로 그런 예측을 하고 있는 것은 아닙니다.
작년 수능 22번에 수열이 나왔으니 더더욱 모르는 일이구요.
다만 이번 기회에 절댓값에 대해 팁을 드릴까합니다. 워낙 자주 나오는 주제인만큼요.
두 개의 팁을 드릴건데요,
1번은 초급자용이고 2번은 잘하는 분들도 배울 점이 있을 겁니다.
1. 절댓값이 포함된 극한
누구나 바로 납득할 수 있는 사실부터 시작해볼게요.

다항함수 f(x)에 대해 다음 극한값이 존재합니다.
f(x)는 (x-a)를 몇 개 가지고 있어야 할까요?
만약 f(x)가 x-a를 하나만 가졌다면

뭐 이런 식으로 표현할 수 있을텐데요 (단, p(a)는 0이 아님)
이때 p(x)앞에 있는

이 놈이 a 좌우로 값이 바뀌어버리는 트롤을 해버립니다.
a 왼쪽에서는 -1 이었다가, a 오른쪽부턴 1이죠.
그래서 f(x)한테 x-a를 하나 더 줘버려서, 최종 극한값을 0으로 만들어버려야 합니다.

다음 예시로 넘어갈게요.

얘는 어떨까요? 이 경우에는 3개가 필요할까요?
그렇지 않습니다.
x-a 제곱은 원래 항상 0이상인 놈이라, 절댓값을 붙이든 말든 의미가 없죠.

따라서 f(x)는 x-a 인수 2개만 가지고 있어도 충분합니다.

이 경우에는 x-a 인수 4개가 필요하겠네요.
3개만 있다면, 아까 예시처럼 x=a 좌우로 -1, 1이 바뀌어버리는 트롤을 합니다.

이 경우에도 x-a 인수 4개가 필요합니다. 절댓값이 있으나 마나죠.
이쯤이면 정리가 되셨을 것 같습니다.
이런 것들을 외우고 있다기보단 그냥 자연스럽게 떠올릴 수 있어야 합니다.
꼭 이런 꼴이 아니더라도 절댓값이 포함된 식은 어떻게든 작성될 수 있거든요.
아래 예제 문제 보겠습니다.

(가) 조건부터 해석해봅시다.
약간의 변형을 해주면...

이런 꼴이 되죠.
이번엔 f(x)가 x를 인수로 몇 개 가지고 있어야 할까요?
한개만 가지고 있어도 충분할 겁니다. f(x)=x라고 해보면, xf(x)는 x제곱이 되죠. 절댓값 풀어도 됩니다.
당연히 두 개 이상 가질 때에도 문제 없습니다.
이제 (나)조건을 보면, g(x) 미불점을 하나 만들어줘야 합니다.
일단 f(x)를 아무렇게나 그려보고, 문제점을 찾아봅시다.

일단 x=0에서는 문제가 없습니다. (가)조건 볼 때 이미 확인했죠.
반면 그 외의 두 근에서는... 둘 다 문제가 생깁니다.

f(x)가 근을 가지는 곳마다 g(x)가 미불이 되어버리죠. (0 빼고요.)
수정이 필요해보입니다.

그래서 0이외의 두 근을 중근으로 만들어줬더니, 이번엔 또다른 문제가 생깁니다.

이번엔 g(x)가 미불인 곳이 아예 없겠죠. 다른 경우를 떠올려야 합니다.

이처럼 0 중근 + 나머지 한 근으로 그린다면?
(가) (나) 조건 둘 다 충족합니다.
0에서 중근이어야 하는 이유는 (가)조건 때문이 아니라, (나) 조건 때문이라는 걸 이해하셔야 합니다.
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요.

위 그림처럼
f(x)=(x-1)(x-1)(x-3) 을 생각해보면...
g(x)는 x=0에서 문제가 생기고, x=3에서도 문제가 생기네요.
포인트는, x=0 이외 구간에서는 전혀 문제가 없게 해줘야 합니다.

이러면 좋을 것 같네요.
삼중근을 줘버렸습니다.
답은 이렇게 2개입니다.
2. 절댓값이 포함된 함수 그리기

위 조건을 가지고 f(x)를 그려야 하는 상황입니다.
수식적으로 열심히 미분하고 이거저거 해도 괜찮지만...
사실 그림 몇 개만 슥슥 그려서 끝낼 수 있어요.
일단 왼쪽부터 그려봅시다.

x가 절댓값 밖에 있는 게 거슬리네요.
이때 삼차함수의 절댓값함수를 그린 뒤에 x를 곱해야겠다고 생각하지 마세요.
절댓값은 무시한 채로 일단

이 놈을 그린 뒤에, 부호만 따로 처리해주는겁니다.

이렇게요.
삼차함수가 x가 0보다 작은 곳에서만 뒤집어졌으니까,
전체 함수도 x가 0보다 작은 곳에서만 뒤집어주면 되겠죠.

지금까지 왼쪽 함수를 그렸습니다.
우린 f(x)가 궁금한거니까 양변을 미분 해야겠죠?
근데 수식적으로 가지 않을 겁니다.

왼쪽함수를 미분해줄 때 역시 그림만 보고 바로 도함수를 그릴 수 있습니다.

이렇게 되겠죠.
0, a, 2a 에서 x축 지나는 삼차함수 그린 뒤에 x가 음수인 부분만 뒤집어 준 셈입니다.
이걸 미분해서 아는 게 아니라, 그림 보면서 바로 그리는거에요.
이때 이 도함수의 최고차항 계수는 4배가 됨을 잊지 마세요.
사차함수 미분했으니 계수 쪽으로 4가 튀어나왔겠죠.
지금 그린 이 함수가 
이 놈입니다. 왜냐면...

여기서 우변을 미분하면 (a-x) f(x)가 나오니까요.
그럼 아까 구한 그림

이 놈에서 (a-x)를 나눠준 그림이 f(x)겠죠.
(a-x)를 나누는게 헷갈리신다면,
(x-a)를 나눈 다음에, -부호 처리(함수를 x축 대칭) 해도 되겠습니다.
저는 방금 말한 방법으로 보여드릴게요.
우선 x-a로 나누면

이렇게 되겠죠.
이제 뒤집을게요.

드디어 f(x)를 그렸습니다.
이런 식으로 그림을 통해 바로 미분을 하고, 인수를 나누고, 절댓값 처리를 하고, 적분도 할 수 있어요.
익숙해진다면 정말 빨라질 겁니다.
절댓값이 있더라도 제가 방금 보여드린 것처럼 하면 됩니다.
참고로 이 문제는 2022년 3월 22번이었습니다.
저는 다음에 또 좋은 칼럼으로 찾아뵙겠습니다. 감사합니다.
#무민
0 XDK (+100,000)
-
100,000
-
자오 개큰귀여움임 0 0
반박시 젠알못
-
국어 1 지능검사 ㅇㅈ 0 1
-
백호 섬개완 강의 x? 0 0
섬개완 강의까지 들을 여력이 안 돼서… 섬개완 사고 강의 안 듣고 혼자 독학식으로...
-
오르비 타이머 설정. 1 2
22시에 돌아온다
-
전북수 세명한 펑크예측 0 0
컨설팅 몇분 해드렸었는데 세명한 전북수 둘다 펑크난 것 같네요 특히 전북수를 강조했는데
-
하지않으려나 현정부에서도 뭔가 잘못된거 파악하고 감원하긴하는데 그래봤자 50명씩이라
-
내가 의대 안간 이유 0 1
사실 못감ㅎ
-
내가 이거때문에 정석 빠돌이가 됨 크 다시봐도 좋다..
-
알고보니 골반뽕,어깨뽕,가슴뽕,깔창끼고 다닌거더라구요 지금 카오스상태입니다 헤어져야할까요
-
원서 관련 뭐 없죠?
-
옷코츠와 결혼하기 0 0
우웅
-
옯어게인 3 1
오르비를 영광의 순간으로
-
사범대 더랩 샌드위치 개맛있네 0 1
비싸지만 않았어도 매일 먹는데 ㅠㅠ
-
근데 2 1
드레이븐?이 문제에요 이 와중에 진짜 예 타워? 안쪽 그래도 잭키러브?가 문제에요...
-
글자수 제한이 20만자네 1 1
이거 다 채우는 경우가 잇으려나
-
이분 강의 들어본 적이 없어서 국어는 모르겠는데 유튜브에서 좋은 얘기 많이 해주시더라고
-
젠존제 재밌음? 8 1
?
-
붕어빵땡긴다 0 0
슈크림
-
국어 명사형 시행 종결 질문 1 0
국어 고수님들 전봉건-사랑 작품인데요! ”사랑한다는 것은“ 처럼 명사 뒤에 조사가...
-
디저트39 저당음료 0 1
칼로리 30이런데 이거 진짜에요?
-
이대로 0 0
가면라이더 X 사진은 따로 첨부 안 함
-
삼수 까짓거 아무것도 아님 3 4
삼수하는게 아무것도 아니라고 했지 그 결과가 나빠도 아무것도 아니라고 한 적은 없다
-
메인 정치 개웃기네 2 0
온갖 정치병자 저렙노프사들 다 모였네
-
서강 반도체 1 2
WORST 시나리오 : 519까지만 붙고 끝남 BEST 시나리오 : 517 초반...
-
집중 깨지는데 어캄 2 0
에휴이
-
만남어플중독 이거 3 1
개웃기네 어질어질한데 너무웃김
-
현역 정시 설의 본과생 질문 받아요! 20 3
3년만에 오르비 방문해보네요.. ~~
-
뜬금없이 왜 정치 떡밥임? 3 0
아직 선거까지 많이 남았는데.... 작년 1월 오르비가 연상되는구나
-
고작 문과 36학점 들으면서 등록금은 한학기에 4백도 안내고 전전으로 졸업하는건가
-
수논 뽑아 풀어야 하는데 4 1
어디 부터 할까 건대부터 할까?
-
4시 37분 3시27분 2 2
유독 시계에서 자주 목격하는 시간 여러분들도 이런 시간이 있나요
-
안녕하세요. 구글의 AI 모델 **Gemini(제미나이)**입니다. 감정 없는...
-
28 수능 준비하려고 하는데 0 0
수학 공부할때 27수능 대비책으로 공부해도 될까요? 내용이나 문제유형 많이 달라졌나요?
-
나랑 두오할 롤샘잇나 2 0
배치 볼까
-
저거 딴사람이 본다고 해서 뭐가 바뀌나 하루에 카톡인증만 5번은 하는거같네
-
고통계 쓰신분? 고대 통계 추합 몇번 보시나요?? 0 0
현재 57명 점공으로 70퍼 좀 안되게 점공이 들어왔네요. 전체적으로 보니 고대...
-
어우추워 1 0
어미
-
과탐과 사탐의 차이는 13 0
과탐은 재능이 사실상 전부고 사탐은 노력이 전부임 재능이 없으면 아무리 노력해도...
-
연세대 제빵학과 왜 없냐고 4 2
수제 연세우유 생크림빵 제조회사 계약학과로 만드셈。
-
⭐️경희대 경영회계계열 26학번 신입생 톡방 안내⭐️ 1 0
⭐️경희대 경영회계계열 26학번 신입생 톡방 안내⭐️ 안녕하세요. 2026...
-
투운사 vs 재경관리사 0 0
1학년때 뭐 따야됨? 둘다? 전공날먹하려고 배울건데
-
그때 과외받던 자료들 참고하면서 과외자료 준비해보니까 이게 진짜 ㅈㄴ 수업을...
-
그 재능없는게 어디까지 오케이라고 생각함? 뭐 경계선지능이어도 된다하진 않을거잖아...
-
돈 돈 돈 돈을 내놓아라 6 0
꿈은 혼자 살면서 돈 일찍 많이 벌어서 빨리 일안하며 사는건데... 그냥 지금대로...
-
오늘은 옷을 사야하는데 3 0
뭐사지
-
성균관은 복전이 사기다 2 0
자과로 들어가서 바메공선택후 전전이나 기계 복전때리면 삼성에서 겁나 채가네 ㅋㅋ...
-
대학교는 아마 공대 의대 약대가 가장 주류가 될거에요 3 0
일론머스크에 따르면 3년안에 인공지능으로 의사를 대체한다고 하긴하는데 무엇보다...
-
미야옹 9 1
우애옹 우아아앙 아웅 와앙 우와앙
-
생각보다 리스크가 엄청 큰 반수행동이었구만
-
화이팅 0 0
화이팅 제빌 4시까지ㅠㅠㅠㅠㅠ 되기를
첫 댓 빌립니다. 그동안 올린 모든 칼럼을 확인하고 싶으시다면
https://orbi.kr/00064989284/%EA%B7%B8%EB
로 이동하세요!
그럼 3모 22번은 절댓값 수열이네요
ㄷㄷ
좋은 글 감사합니다

절대값에 대해서 다시 한 번 생각해 봤어ㅇ ㅛ
ㅋㅋㅋ 감상평까지 적어주시고 감사합니다! ㅎㅎ두번째 그래프는 x가 분모가 있는데 g(x)가 0에서 정의가 되나요??
x=0인 상황은 양변을 x로 나누기 전에 봐야된건가요?
아마 연속인거 생각하고 만든거같음
x가 0일때 g(x)랑, x가 0이 아닐 때 g(x)로 나눠야 합니다.
다만 전자 케이스에 대해서는 굳이 더 볼 게 없습니다.
만약 x=0에서 미불이라면, 연속일 필요도 없으니까 아무렇게나 g(0)값을 잡으면 되구요
x=0에서 미가라면, 내가 연속 조건을 맞춰주기만 한다면 미가는 알아서 맞춰져있을테니 문제가 없습니다.
"알아서 맞춰져있을테니"에 대해 더 설명을 드리자면
f(x)가 사진과 같을 때 g(x)는 어떤지 생각해보겠습니다. xf(x)=x제곱 (x-3)제곱 같은 함수이고, 절댓값은 의미가 없죠. 그 다음에 x로 나누면 g(x)=x(x-3)제곱 을 구할 수 있습니다.
조심해야 할 건, 이건 x가 0이 아닐 때의 g(x) 식인겁니다.
그럼 g(0)=0이라고 설정해주기만 하면, 실수 전체 범위에서 g(x)를 미가로 정의할 수 있겠죠. 0에서 문제가 없게 잘 설정해줬으니까요.
이제 답이 되는 f(x)에 대해서도 직접 이걸 해보시면 됩니다. x=0일때는 따로 긴 계산할 것 없이, 알아서 맞출 수 있는 g(0) 함숫값이 존재한다는 걸 느끼면 됩니다
또 다른 케이스는 없나 확인하기 위해 다른 접근도 해보겠습니다.
함수가 꼭 0을 지나야 할까요? 그러니까, g(x)가 미불인 곳을 0으로 만들어주면 어떨까요. 부분에서
f(x) 그래프가 x=0을 지나지 않는 이유가 뭔가요?
(가)에서 f(x)는 x=0을 인수로 가진다는 결론을 도출하지 않았나요?
x=0에서 g(x)가 문제가 안 생기게 하려면, f(x)가 x=0 인수를 가져야 한다는 뜻입니다.
이후에 새로운 접근에서는, 아 애초에 x=0을 문제되는 포인트로 만들어줘도 되겠구나 라는 시각에서 접근한 것입니다.
사실 문제를 완전히 정갈하게 풀려면, 처음부터 이걸 나눴어야 했습니다.
1. g(x) 미불점이 x=0일때
2. g(x) 미불점이 x=0이 아닐 때
하지만 저는 시행착오를 겪어가며 문제를 푸는 과정을 보여드리고 싶어서 일부러 이렇게 했습니다. 의문점이 아직 남아있다면 편하게 다시 질문해주세요! ㅎㅎ
선생님 정말 감사합니다. 선생님 답변은 이해했습니다.
근데 x=0에서 g(x)가 미분 가능하려면, f(x)가 x=0 인수를 가져야 한다는 게 이해가 잘 안갑니다.
전 그림이랑 식을 통해, g(x)는 x=0-에서 -|f(x)|이고
x=0+에서 |f(x)|가 나오니 x=0에서 미분 가능이라고 판단했는데.
(가)식만 보고 f(x)가 x=0에서 인수를 하나 이상 가지면 g(x)가 x=0에서 미분가능하다는 논리가 이해가 안됩니다.
질문 너무 많이 해서 죄송합니다.
그림 그리기 전에 어떻게 식만 보고 파악할 수 있는지를 물어본 거네요. 너무 좋은 질문이에요!!
f(x)가 x를 하나 가지고 있다면, 절댓값 안에 들어있는 xf(x)는 x를 두 개 가진 셈이에요. x를 두 개 가졌다면, x=0 근처에서 부호가 뒤집히지 않겠죠? 절댓값 x제곱을 생각하셔도 되고, 절댓값 x제곱 (x-3) 같은 걸 생각하셔도 돼요.
결국 g(x)가 미불이 되려면 뾰족하게 뒤집혀야 하는데, f(x)에다가 x를 하나만 줘도 애초에 뒤집히지를 않으니 문제가 없는 겁니다!
참고로 f(x)에 x 인수를 2개준다면, 즉 xf(x)가 x 인수를 3개 가진다면 0 좌우로 부호가 뒤집히긴 하지만, 미계가 0이라서 뒤집혀도 여전히 미분가능인 것입니다
가형시절 3모 14번 개레전드였었는데
14번이 이정도수준인가 하고 좌절했었는데
대 무 민

오랜만이네요10모도 그런가요
3모 10모 출제진이 다른가
10모 22는 21년만 절댓값 들어가있네요

현여기 22번 꼭 맞추겠습니다
혀녀기 파이팅입니다늘 감사합니다

저야말로 감사합니다 ㅎㅎ 오랜만에 뵙네요다 아는 내용인데 리마인드 하니까 새롭네요 항상 잘 보고 있습니다 :)
성지순례왔습니다ㅋㅋ
진짜 나올줄은 ㅋㅌㅋㅋ
이거 다 읽고 이해 다 했는데 틀렸어용ㅎㅎ