눈풀가능?
게시글 주소: https://orbi.kr/00063906682
삼차함수 비율관계로 마무리됩니다.
인수의 관점에서 x를 묶은 뒤에,
나머지 부분을 관찰한다고 보셔도 돼요.
끝!
#무민 #짧은칼럼
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제아봉침술쓰면 어캐이김뇨
-
저는 국수탐 합쳐서 5개 틀렸고요, 네 영어는 묻지 마시고요
-
힙찔핑
-
점수가 애매해서 둘중에 하나로 방향 정해야할듯요
-
학식머그러감뇨 2
빠빠이
-
답도 다 맞았다는 가정하에.. 합격자 평균점수 보면 80% 정도만 맞춰도 그냥 붙는...
-
캬 이거 재수하면 6개로 줄어드나
-
그니까 너무 쫄 필요없음
-
"영원한 1등은 없었다"…15년간 요동친 '톱10' 대학 순위 [2024 대학평가] 5
https://n.news.naver.com/article/025/0003402656...
-
정상인데 인스타 중독안 남자들은 먼가 뒤가 구렸던 적이 많았던 거 같은데 나만...
-
애니프사단은 실제로 보면 잘생기고 사회성 많고 젠틀하고 시사에 관심 많고 2d...
-
요즘 인스타나 유튜브에 입시 관련해서 ㅈㄴ 킹받는 글이랑 영상 왤케 많냐 3
뭐 대충 뇌피셜 or 아님 말고 식으로 이상한 정보 던지고 수험생들한테 욕 박힐까봐...
-
학종 비율 4
서류 최고 700, 최저 600 면접 최고 300, 최저 270 하 뭐지..
-
씨발 8
군대갔다와서 바이크산다
-
혹시 올해보신분들있나 ㅇㅏ직결과안나와서 모르시려나 과탐진짜 엄청고였던데...화1...
-
경제>>경영 8
경영 허~~~접^^
-
시험장 가는 길에 차에서 어플로 기출 한두바퀴 돌리면 2종 정도는 1트에 합격 가능...
-
근데진짜괜찮긴함
-
실시간 으로 추가하고 싶은데 아직 새로운게 없네요
-
연고대 낮은과 죽어도 안될까요? ㅠ ㅠ 처음이라 잘 모르겟어서,,, 대학 라인...
-
진짜 너무 스트레스받고 힘듦 진짜...어디 놀러간다하면 그친구는 어디대학이냐고...
-
ㄹㅈㄷ 얼버기 2
매일 3-4시에 일어나다가 오늘 1시에 일어남 ㄷㄷ;;
-
그래서다들망함뇨 6평 9평 사탐 백분8n소유자..그게바로 나야
-
안녕하세요, 삼수생입니다. N수해서 성적 변화 없는 케이스들이 많고 수능 중독...
-
이번에는 꼭 붙는다
-
정답자 천덕 물리러드립 아닙니다
-
얼벅이 등장 2
흐흐흐
-
회기탈출하면 3
경뱃달고 경평글 싸야지 흐흐
-
자세한 건 모르고 대충 보니 여당 대가리는 탄핵빔 맞고있고 야당 대가리는 징역빔...
-
이미지 적어드립니다 26
심심해서 달아만 주신다면 정성스럽게 적어보겠습니다...!
-
요즘 반도체학과가 입결 탑급이고 여러 학교에서 많이 생기는 중인데 졸업할쯤 돼서도...
-
존나쳐웃긴데
-
그어살 봐볼까 2
안보긴했는데, 지루하다는 평이 꽤 있어서 고민중
-
게시글 모아보기 프사 라인업 봐라 ㅋㅋ 십덕이 세상을 지배한다
-
신설학과 예측 0
텔그나 고속에서 신설학과는 보통 어떤 걸로 예측하나요?
-
??:철도노조 이 미친새끼들 ???:2025 의대 모집정지 해야한다
-
종목 : 수능 국어 점수 내기
-
생윤 40 1컷 1
가능성 없을까요? 진짜 너무 간절한데
-
학교 레벨은 취향차이인 것 같고
-
우웅
-
챕터는 왜 나누는 것이며 스토리를 왜 쓸데없이 질질 끌어 뮤지컬 영화래서 기대했는데 기대 이하
-
사문한지가꿀임뇨 1
올해까진확실함뇨
-
는 사진이 없어서 닮은꼴로 대체 좀 비슷한거 같기도,??
-
사문 고이면 7
곱하기 빼기 나누기 입갤 점수는 4점인데 틀리면 -1점 1개 맞으면 더하고 2개...
-
슈냥님 제외 내가 제일 나이 많으려냐
-
닥터페퍼도 좋아해요
-
탐구를공통선택체제로만들어서보정해야하지않앗을까
-
기계가 있으면좋겠다
2017년 11월 고2 학력평가 가형 30번이 생각나네요 ㅎㅎ
이 문제인가요?!
그렇습니다.
걸어다니는 평가원 아카이브 ㄷㄷ
심지어 평가원이 아니구나
맞췄당 ㅎㅎ
시대에서 이거 처음 배우고 충격받음
유익하네요
빨간점 a 노란점 b로 두고
4 + b = 2a
4 + 4b = a^2
무지성으로 근계관 쓰는방법도
나도 모르니까 그냥 이랬는데
두번째 식은 어떻게 나온 거애요??
4차 다항함수 식에서
3차항 계수는 근의 합(a+b+c+d)
2차항 계수는 두 근끼리의 곱의 합(ab+ac+ad+bc+bd+cd)
1차항 계수는 세 근끼리의 곱의 합(abc+abd+acd+bcd)
0차항(상수항) 계수는 근의 곱(abcd)과 관련이 있는데,
4차와 직선(1차)를 연립해봤자 2,3,4차항은 보존(불변)이므로 근의 합과 두 근끼리의 곱의 합이 유지됨을 나타낸 수식입니다
근데 저거 과정 수식 좀 알려주시면 안되나요?
능지가 딸려서 이해가 안돼요 ㅠ
인수나누기, 기울기함수 관련 칼럼 찾아보셔요
참고가능한 사진 하나 첨부해드릴게요
혹시 칼럼 어디서 가져오신건지 여쭤봐도 될까요,,? 가서 읽어보고싶어서요
헤헤
간격곱이 뭔가요
거리곱이라고 검색해보시면 나올거에요
https://orbi.kr/00062385201
이 칼럼 맨 마지막 부분에 설명되어있습니다 :)
와 신기하네요
저는 엄청 발상적으로 근의합 원리처럼
일차를 사차에 더해도 2차항은 그대로일 테니ab+ac+ad+bc+bd+cd가 일정하게 나오는 원리로겨우 눈풀햇어요
권경수가 알려줌 ㅋㅋ
앗… 이게 이렇게 유명해져 버리면…..!!!
기울기함수 느낌이네요 볼록접에서 극값을 갖는...
권경수의 몫합수 ㄷㄷㄷ
님 ㄹㅇ권경수인가..
이동준의 인수나누기...?
딱 이거다 ㅋㅋㅋ
권경수의 차원 찢기 ㄷㄷ
어려워요 ㅠㅠ