[국어 Rule]- 최선 긍정형 문제의 접근 방법
게시글 주소: https://orbi.kr/0005903177
수학에는 없다.
국어에는 있다.
무엇일까?
그것은 최선 긍정형 발문!!!!
즉, 지문과 자료를 통해 가장 적절한 것을 묻는 형태의 문제.
수학에는 답이 딱 떨어지는 학문이기에 없고 고도로 주관적인 국어에만 있다.
사실, 모든 객관식 시험의 문항은 긍정형 발문형으로 만들어지도록 권장되어 있다.
그럼에도 불구하고 수험생의 혼란을 가중시켜면서까지 부정형 발문형이 시험에 많은 이유는
다음과 같은 출제자의 편의성때문이다.
1. 지문에~적절한 것은? (긍정형)
① 적절하지 않은 내용 ⇒ 가공
② 적절하지 않은 내용 ⇒ 가공
③ 적절하지 않은 내용 ⇒ 가공
④ 적절한 내용 (정답)
⑤ 적절하지 않은 내용 ⇒ 가공
2. 지문에~적절하지 않은 것은? (부정형)
① 적절한 내용
② 적절한 내용
③ 적절한 내용
④ 적절하지 않은 내용 (정답) ⇒ 가공
⑤ 적절한 내용
동일한 문제를 긍정형으로 만드는 것이 부정형으로 만드는 것보다 기존의 내용을 새롭게 가공할 것이 많아
출제자에겐 힘들기 때문이다.
위의 유형에 거기에 더해지는
수학에는 없는, 최선 긍정 발문형 문제!
매년 수능 국어에서 30%정도 출제되는 하는데...
출제자와 수험생에겐 어떤 의미인가?
먼저 출제자에게는 가장 적절한 것을 고르라고 했기에 복수 정답의 인정여부를 막는 수단이 된다.
정답과 비슷한 다른 것이 있어도 더 적절한 것을 발문에서 요구했기 때문이다.
하지만, 수험생에게는 정답을 골라내기 어려운 문제이기도 하다.
정답과 아주 닮은 매력오답이 있기 때문이다.
사실 국어 시험이 어려운 이유는 지문이 굉장히 어려워서가 아니라 정답을 매우 닮은 매력 오답이 있기 때문이다.
그렇다면 이것을 역이용해보자.
최선 긍정형 발문에는 정답이 있고 이를 닮은 매력이 오답이 분명 있을 것을 미리 염두해보자.
즉, 5개의 선지 속에 가장 핵심 낱말이나 맥락 등 공통된 것이 많아 최대 닮은 꼴의 선지 한 쌍을 생각해보는 것이다.
여기에 정답 하나+매력오답 하나가 있고 이를 중심으로 문제 풀이의
효율성을 함께 고려하는 것이다.
다음 닮의 꼴의 Rule을 생각해 보면서 문제의 선지를 살펴보자.
최대 공통성(닮은 꼴)?
1) 선지에서 나타내고자 하는 핵심어나 서술어(문장에서 가장 중요한 성분) 등이 서로 동일(1순위)하거나 유사 의미성(2순위)을 이룸.
2) 서로 긴밀한 문맥적 관련성(1.대등 2.인과 관계로 연결)을 가짐
3) 한 쪽이 다른 한 쪽의 대부분 내용과 특성을 포함함.
먼저 최근 국어 시험인 지난 4월 학평 문제를 살펴보자.
이게 수능에도 적용될까?
적용된다!!!!!!
최신 수능인 작년 것을 살펴보자.
여기저기 여러 시험에서 가져온 것도 아니고
2015 수능, 가장 최근의 한 시험에서 무려 6개 씩이나?!!!
이를 통해 다음의 Rule을 이끌어 낼 수 있다.
'매력 오답'의 R u l e
선지의 일정한 패턴과 Rule을 통해서 정답의 가능성을 파악하여 문제 풀이의 능력을 극대화하는 것이다. 5개의 선지중 하나의 선지가 산술적인 정답의 확률은 20%이지만 가장 적절한 것을 묻는 최선 긍정 발문형 문제에서 최대 공통점(닮은 꼴)의 한쌍이 존재하는 경우 그 둘 중 하나의 선지가 정답이 될 가능성은 약 75%이다. (평가원 20개년 국어 시험 통계)
간파된 매력 오답의 원리 !!!
출제자는 가장 적절한 것을 묻는 문제에서 정답과 닮은 매력 오답을 만들어 수험생을 혼란으로 빠뜨려한다. 수험생은 이를 역이용해 최대 공통(닮은 꼴) 선지 한 쌍의 정답률이 75%임을 팁으로 활용하면 문제풀이의 감을 극대화 할 수 있을 것이다.
올해 수능도 반드시 예외없이 활용될 것이다.
제대로 알고 활용하면 이를 아는 자와 모르는 자,
분명 성적의 차이가 있을 것이다.
칼럼 요약 및 결론
* 지문을 읽기 전에 먼저 읽는 선지를 통해 최선 긍정형 발문에서 최대 닮은꼴(공통) 선지가 발견된다면 정답의 가능성(75%)을 파악해 볼 수 있다.
* 선지별 정답의 가능성을 알고 있는 자와 모르는 지문을 읽는 반응 속도와 수험생의 심리상태가 다를 수밖에 없다.
* 국어시험에는 허점이 있다. 시험의 법칙을 통해 자신의 실력을 극대화 시키자.
4월 학평 선지 분석 모음: http://orbi.kr/0005882293
경찰대+사관학교 분석: http://orbi.kr/0005869248
3월 학평 지문,발문과는 무관하게: http://orbi.kr/0005803899
정답과 매력 오답의 공통성: http://orbi.kr/0005780411
발문과 정답의 근거 위치: http://orbi.kr/0005772981
국어 공부 10계명: http://orbi.kr/0005750801
실전에서 무시 못하는 팁 http://orbi.kr/0005740117
전개 방식 풀이 노하우: http://orbi.kr/0005707766
지문 먼저 읽기 VS 문제 먼저 읽기: http://orbi.kr/0005690231
정공 독해법 VS 문제 풀이 기술: http://orbi.kr/0005666450
팁도 쌓이면 실력: http://orbi.kr/0005646997
기출은 과연 진리인가? http://orbi.kr/0005617619
습관화된 출제자의 심리: http://orbi.kr/0005594451
비문학 감각 충전: http://orbi.kr/0005570969
문학 감각 더하고 가자: http://orbi.kr/0005555609
서술상의 특징 문제 해결: http://orbi.kr/0005518786
2015 수능 현대시 모두 적용: http://orbi.kr/0005489483
정답과 부정형은 75%이다: http://orbi.kr/0005469384
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
맞팔하실 분 4
잡담 태그 잘 다니까 댓글 주세용
-
무영창은 시전자의 목숨을 앗아갈 수 있으므로 주의해야함
-
얘두라 5
일요일이니까 공부하지말고 쉬어
-
강X 모고가 아직 안팔아서 2026 이해원 N제 사려는데 작년이랑 많이 겹치면 딴거사게요
-
2025학년도 경인교대 면접 기출(선행학습평가) : 네이버 블로그
-
아침 공부 쉽지 않네 10
흠
-
아싸 홍삼 8
에브리바디 홍삼
-
3번째 얼버기 4
다시 잠들기 싫어
-
41점 3등급임 세지지구할지 세지한지 할지 고민입니다 두과목 새로 시작하는게 부담도...
-
다른데 갈 데가 없긴 하겠네요...ㅋㅋ 치대 -> 비급여 × 과포화로 망해가고 있음...
-
– 간판값 못 하는 애들 7종 모음.zip – 요즘도 학벌 빨고 있는 애들 많더라....
-
we are in the rocket ship
-
얼버기 0
-
20, 21, 29, 30 빼고 30분만에 다 풀었는데 20번에 20분, 21번에...
-
한국사를 아예 모름 사실상 재수생이라 3모가 저 점수면 한국사만 문제가 아닐텐데...
-
국 90 수 85 영 84 물50 지50 내신은 지역자사고5점대라 버림..
-
심찬우 선생님 생글 완강하고 에필로그도 다 풀었습니다 심찬우 선생님은 독서 지문...
-
ㅈㄱㄴ
-
기다려 오뿌이들
-
f(x) 최고차항이 작다면 이런 상황도 가능하지 않나요? 접한다는 건 한점에서만...
-
다시 봐도 수긍이 가는 이건희 회장의 30년 전 발언 2
30년 전 발언이 지금까지 통할 줄은 몰랐네요.
-
현강생인데 현강 중간고사 휴강기간 이후에 결제하는건가요? 결제하라는 문자가 안와서요
-
공신력 ㅆㅅㅌㅊ인 곳에서 가져옴
-
고2고 내신 화학 부교재가 수능특강이라 cnr특강 듣고 지금 수특 풀고 있는데...
-
사주에서 이번에 대학 못가고 재수하면 연대갈수있다고 하는데 뭐라 말해줘야할까
-
수학 마킹이슈로 81점된건 양해부탁
-
예전에 벤 빠돌이일적에 '우리 벤누나가 삼십대가 되면 어떻하지 ...' ㅇㅈㄹ...
-
2025학년도 한국외대 논술 기출(선행학습평가) : 네이버 블로그
-
P and not P가 참이면, 사진의 5번에서 P or not P 가 참이됨따라서...
-
그대 생각이 많이 나네요이런 생각하면 바보 같지만저기 먼 곳에서 그대 다시 올 것만 같아
-
시대인재나 대성학원 다니나요?
-
물리 선택자분들 3
오늘부로 여러분의 발판 한명이 사탐으로 떠나게 되었습니다. 안녕히계세요
-
브레이크 고장난 경운기에 태워서 담벼락에 들이받는 꿈을 꾸었늠
-
일단 저는 고2고 영어 모의고사 만년 3등급인데요 어떻게 3등급을 탈출할지...
-
레버기 0
부지런행
-
잔다리 2
-
ㅎㅇㄹ 8
안농
-
3모 93점 정시파이터 학교평균>=전국평균정도 하는 학교 시험범위 안보고...
-
복습 영상 어디서 볼 수 있어?? 제발 ㅠㅠ 급함
-
[르포] 일상 복귀, 마음 바쁘지만 아직…"잿더미만 봐도 눈물" 0
"영감이 광부 일하며 모은 돈으로 지은 집, 한순간에 사라져" 출향인, 임시생활...
-
어젯밤에 무슨일이
-
와.. 나도 이해할수 있을정도임..
-
일요일은 늦잠 자니 머리가 맑아지는것같음 학원가서 자습해야지ㅎ
-
기하 난이도 올라가는 건 나도 반대다 기하는 적당한 난이도에 공부량 1/3하고...
-
미적분 현재 김범준 듣고있는대 부족하다는 느낌이들어서 개념부터 다시다지고싶은데 어찌공부해야할까요…
-
옯창빙고 ㅇㅈ 4
나 왜이렇게 옯창임
-
"천국에서 만나요"...의성 산불 끄다 숨진 헬기 기장 영원히 하늘로 1
경북 의성군에서 역대 최악의 산불을 진화하다 헬기 추락으로 숨진 고 박현우(73)...
격하게 공감합니다. 특히 어려운 수능에서는 더욱 선생님의 분석이 빛을 발할 것입니다!
감사합니다. 국어 공부에 조금이나마 도움이 되길 바랍니다.
질문있습니다.
1.여태껏 올린 칼럼, 그리고 앞으로 올리실 칼럼들이 책에 다 포함되어 있나요?
2.올해 안으로 책이 개정될 계획이 있나요?
ㅇㄹㅇ
두 분에게 쪽지로 대신 답변드립니다.