나라면 수능 전 꼭 복습할 기출 총정리(feat. 소재별 접근법)
게시글 주소: https://orbi.kr/00040273423
[기출 에센스] 교재.pdf
[기출 에센스] 손필기.pdf
클릭해주셔서 감사합니다.
제가 수험생일 때 지금 시기 뭘 했나 생각해보면 새로운 문제 푸는 것보다 체크해둔 문제들 틀린 이유나 떠올리지 못한 접근법을 다시 한 번 정리 했었고 이게 되게 좋았습니다.
나라면 이런 문제를 복습하지 않을까라는 생각으로 최근 기출들을 소재별/주제별로 묶고, 접근 방법을 정리해보았어요. (어제까지 올린 글 모아둔 것입니다. 제목 클릭시 지난 글로 이동합니다.)
혹시 내용들이 너무 새로운게 많으시다면 지금 시기에는 오히려 혼란스러우실 수 있으니 비추천이구요. 어느 정도 공부가 되어 있을 때 효과가 좋을 것 같아요.
대입, 관찰, 나열이 기본이구요.
- 주기성 나오는 지 보시고
- 사칙연산을 결과를 쓰지말고 그대로 표시하는게 유리할 때가 있구요 예) 1+2+3 그대로 쓰기 (O), 6 (X)
- 경우가 나누어질 때는 수형도로 가지치기 하면 강력한 도구로 사용 되는 경우 많습니다.
- a1이 아니라 뒤쪽 항 주었을 때 뒤에서부터 역추적하는게 유리한 경우 있구요
- 역추적할 때는 an으로 표현된 an+1를 반대로 an+1로 an을 표현하는게 편해요. 범위 조심해야하구요. 예) an+1=an+1 (X), an=an+1 -1
- 문제 상황에 따라 추적 시작점을 잘 잡으셔야 합니다.
- 올해 9월 문제에서는 그래프로도 풀 수 있음을 챙기시고,
- 문제에서 합을 물으면 합에 주목해서, 차를 물으면 차에 주목해서 봐보는 것도 센스입니다.
- 정수, 자연수 조건 나오면 약수 조건이 자주 쓰이니 대수적으로 접근해봐야겠구요.
1. 기본적으로
① 그래프는 크게, 비율 맞게 그리고, 주요점(절편, 그래프 위 x, y좌표 정수인 점) 표시합니다.
② 교점이 나오면 대입해서 식 세워둡니다. 주로 ㄴ, ㄷ에서 식변형할 때 자주 사용됩니다.
③ x₁>a를 따질 때는 일단 맞다는 가정으로 그래프에 표시해보고, f(a), g(a)의 대소를 비교해봅니다.
④ 보기에 x₁>a 이 보이면 그래프에 x=a 를 표시해둡니다.
2. 자주 사용되는 내용으로
① (y₂-y₁)÷(x₂-x₁) → y변화량과 x변화량의 비율, 즉 나눠져 있으면 두 점 사이 기울기로 해석 가능합니다.
② (y₂-y₁)×(x₂-x₁) → y변화량과 x변화량의 곱이면 직사각형 넓이로 해석 가능합니다.
③ 위로/아래로 볼록한 함수의 그래프에서 기울기(평균변화율)이 오르쪽으로 갈수록 작아짐/커짐을 이용합니다.
3. 가끔 사용되는 내용으로
① a<b를 보이기 어려울 때 그 사이에 a<x<b인 x를 잡는 것이 요령입니다.
② 그때, 지수나 로그의 대소비교라면 밑이 같아야 유리함에 초점을 맞춥니다.
③ 종종 역함수 그래프의 성질, 대칭성, 평행이동이 사용됩니다.
④ (y₂+y₁)×(x₂-x₁) → y끼리는 더하고 x끼리는 뺀 것을 곱할 때 사다리꼴 넓이로 해석 가능합니다.
⑤ 로그에 등비 넣으면 등차가 되는 걸 그래프에서도 볼 수 있습니다.
3. 고난도 등차수열
1. 기본적으로 수식적인 접근을 할 수 있습니다.
① 일반항에 대입할 수 있고
② 부분합 공식에 대입할 수 있습니다.
③ 부분합은 상수항이 0이고 최고차항의 계수가 공차의 절반인 이차식입니다.
④ 반대로 부분합이 이차식이라면 일반항은 등차수열이 됩니다. 부분합의 상수항이 0이냐 아니냐에 따라 일반항이 첫째항부터 등차일 수 있고 둘째항부터 등차일 수 있습니다.
2. 수식적인 접근보다 나열하고 관찰하는 풀이를 좀 더 연습해두시기 바랍니다.
① 등차수열의 합은 대칭성이 있어서 a1+an=a2+a_(n-1)=a3+a_(n-2) 이 됩니다.
② 등차수열의 합은 (첫항+마지막 항)×(항의 개수)÷2로 구할 수 있습니다. (공식보다 자주 사용)
③ 항의 넘버링의 차이를 보고 d를 몇배하여 더하거나 빼줍니다. (일반항에 대입하는 것 보다 자주 사용)
3. 중요한 성질로는
① 자연수, 정수 조건이 보이면 무조건 예민하게 반응합니다. 약수 조건을 활용할 수 있습니다.
② 등차수열은 부호가 일정하거나 "단 한 번" 바뀌는데 바뀌는 지점을 파악하는게 핵심일 때가 많습니다. 이를 문제에서 다양한 모습(절댓값, 부분합의 대소비교)으로 숨겨서 주므로 잘 파악해야합니다.
(x, y축 기준으로)접으면 기울기 부호가 반대가 됩니다.
따라서 가장 중요한 아이디어는 접히는 경계에서는 미분계수가 0이었어야 미분이 가능하다는 것입니다. 다항함수라면 중근으로 이어지겠죠.
이번 10월 모의고사에서도 되게 복잡해보이지만 결국 x=0, 2 경계에서 미분계수가 0임을 파악하면 간단히 해결할 수 있습니다.
정적분도 그렇고 대부분 문제를 풀 때 ① 대수적으로(수식, 방부등식) 푸는 방법 ② 기하적으로(도형, 그래프, 그림) 접근하는 방법이 있겠죠. 둘을 잘 왔다갔다 하실 수 있어야 합니다.
정적분에서는
"대칭성이 있는 함수가 나왔을 때나 정적분 관련해서 부등식이 나왔을 때 넓이 관점으로 접근하는게 유용한 경우가 많습니다."
사다리꼴과 정적분 넓이 비교를 통해 위/아래 볼록성을 파악할 수 있어야 하고,
구간 내에서 함수끼리 대소관계 있을 때 정적분 부등식 세울 줄 알아야합니다. 여기서 파생되는 몇가지 내용 정리해보았구요.
(a, b) 점대칭이나 x=a 선대칭인 함수가 만족하는 등식을 아셔야 하고, 이런 함수들의 정적분 했을 때 나타나는 성질을 확인해두세요.
x=a에서
① f(x)가 불연속, g(x)가 연속인데 f(x)g(x)가 연속이면 g(a)=0입니다.
② f(x)가 불연속(이지만 좌/우극한/함숫값 각각 존재)이면 (x-a)f(x)는 연속, (x-a)²f(x)는 미분가능입니다.(주의 : 극한값이 존재할 때는 (x-a)f(x) 미분가능입니다.)
③ f(x)가 불연속(좌/우극한 중 적어도 하나가 존재하지 않을 때)이면 부정형 가능하니 직접 정의대로 연속성, 미분가능성을 확인하세요.
이번 수능용 칼럼은 이 글이 마지막일 것 같아요.
올 한해 꾸준히 자료 봐주시고 댓글 남겨 주신 분들 덕분에 뿌듯하였습니다.
자료 도움되실 것 같으면 좋아요, 댓글 남겨주시면 큰 힘이 됩니다.
꼭 좋은 결과 있으시길 바라고, 혹시나 추후에 "덕분에 좋은 결과 있었다." 뭐 이런 댓글이나 쪽지 주신다면 더 바랄 것 없이 기쁠 것 같아요.
작년에 올린 글들 중 볼만한 글과 그동안 올린 글 중에 도움될 만한 글 남겨둘게요.
[작년 볼만한 글]
고3 10월 수학 전문항 손풀이 + 복습 포인트 정리 자료
0 XDK (+100)
-
100
-
내 프사가 0
나보다 몬생김 라고할뻔
-
https://naver.me/55rQNhHl 변호사 수익 상하방 차이가 넘 심해서...
-
하루에 두명씩 쓴다매ㅠ
-
무테 > 은테 되는 게 글 작성가능하게 된 것보다 더 빨리됨 ㅋㅋㅋ
-
학벌을 꼭 높여야만 하나 이런 생각을 하게됨 이제 하도 여러전형이 생겨서 그...
-
오늘은 금요일이니 빈칸으로 연습 해볼게요 The spacecraft...
-
행복해
-
나한테만 집중해주는 사람이랑 연애하고 싶다
-
1시 반에 자야겠다
-
슬슬 자볼가 6
ㅂㅇ
-
맥주 한 잔만 마신 나 자신 칭찬해
-
어느 작은 우체국앞 계단에 앉아~
-
추워 6
이불안에들어가잇기,,
-
제목 그래도 지거국 공대 목표입니다. 나이는 23살이고 군 전역 후 2학년...
-
그 사랑이 아파도 기다릴게 여기서 나
-
맞팔하실분 1
구합니다
-
게토레이엔딩일줄 ㄷㄷ..
-
아오
-
점심 간짜장 저녁 불고기 피자 야식 황올 맥주
-
서울대 지망이라 영어를 드랍하고 싶은데(사실 거의 드랍인 상태긴해요) 또 혹시...
-
밤꽃 6
ㅇ
-
보통 재종같은곳에서 11
눈 내리깔고 다니지않나요? 왜 다 눈마주치지
-
내가 오래 생각해봤는데 학교를 계속 높여서 해결될게 아닌거같음 ㅅㅂ내가 아직도...
-
그렇다 4
나는 정벽이의 단단하고 고결한 내면이 좋았었다 그는 없다
-
젠장 12
난 또 기만을 봐버렸어 오르비하면 잘생기지 마라
-
잇올에서 5
동성이랑 눈 마주치면 싸우자는 의미 맞죠?
-
고2도 더프 칠수 있는 학원 없음???
-
아침마다 ㅈㄴ기분안좋고 오전내내 기분 안 좋은데 공부 시작하면 공부에만 집중해서...
-
햄 이거샀는데 2
어떤지 평가좀
-
우아한 논술 학원 다녀보신 분 있을까요?
-
..
-
전자 드럼통 되나
-
나 이번주 아무것도 안했는데 왜 토요일
-
재수생입니다 현역때 예체능 했었습니다 논술 학원 다녀보고 싶은데 이쪽 길을 안...
-
학원에서 뉴런에서 본 기출 그대로 나왔는데 그땐 따로 개념강의 안 듣고 바로 풀어노...
-
내 돈 내놔 4
나스닥 이...
-
기억하라우리의줅은함성을
-
뭔기능임?
-
라는 꿈을 꾸다가 깼다.
-
아이디어vs뉴런 0
작수기준공통1-12,16-19찍맞없이 다 맞았고 지금 개정시발점듣고있는데 다음 커리...
-
지2는 잘고른듯 4
빌보드에 물2화2생2는 존나 널렸는데 (특히물2ㅅㅂ) 지2는 나름 마이너함 ㅎㅎ
-
수능장가서 20문제 다 풀 자신이 없어
-
바닥에 계란 떨어트렸을때
-
꽃은 보기만해도 기분이 좋아진다니깐
-
몇 개월 전이긴 해도 저능부엉이님 정상화님 그리고 다른 재밌는 분들 많았는데 수가...
-
인생에 유일한 자랑거리다
-
나만 왜 아직 열등감이 심한거같지? 대학을 막 못간건 아닌데 뭔가 모르겠는데 그냥...
-
사탐런 하는 거라 내신으로도 안 해봤고 완전 처음 해봐요 그리고 생명, 지구랑...
-
얘는 볼때마다 다이나믹하네 시발
다시한번 보려고 했는데 총정리 감사합니다~
봐주셔서 감사하고 좋은 결과 있으시길 바라요!
선생님 항상 감사 드려요 ! 가출부터 연계까지 선생님 자료와 풀이영상으로 도움 많이 받고 있습니다 !!
댓글 남겨주셔서 감사하고 많이 도움되셨길 바라요
자료올려주신 것도 고마운데 강의까지 해주셔서 너무 도움많이 됩니다!! 매번 정말 감사합니다~!
도움되신다니 감사합니다 좋은 결과 있으시길 바라요
항상 봐주셔서 감사합니다 수험생이신가요? 수능 잘치셔요~
대학교 공부하시는 것도 바쁘실터라 고퀄강의와 자료 시간내서 올려주시는 거 어려우실텐데도 계속 좋은 자료 업로드해주셔서 감사합니다!! 덕분에 파이널 정리 잘 됐어요 ㅎㅎ
정리에 도움되셨다니 기쁘네요 ㅎㅎ 좋은 결과 있으시길 바라요
저는 펩시제로 파 입니다
제로은 펩시도 맛있긴 한데 근본은 코카콜라죠 ㅎㅎ
감사합니다!!
댓글 남겨주셔서 감사합니다 도움되시길 바라요
정리할게 필요했는데 넘 감사합니다 ㅜㅜ!
보통 마무리 때 뭐할지 막막하죠. 마지막 정리에 도움되시길 바라요
너무 감사합니다!
댓글 감사합니다 좋은 결과 있시길 바라요
감사합니다!! 혹시 여유되시면 사인코사인법칙의 도형활용도 다뤄주시면 감사하겠습니다..ㅎㅎ
의견 감사합니다 좋은 결과 있으시길 바라요
감사합니다 정적분 도움 정말 많이 받았습니다
도움되셬ㅅ다니 뿌듯하네요 ㅎㅎ 수능 잘 치셔요
감사합니다 ㅠ
댓글 남겨주셔서 감사해요 수능 잘치셔요
소중한 강의 감사합니다. 설대 기운 받아갈게요!
댓글 감사합니다 도움 되시길 바라요!
수1 내신할 때, 수열파트 덕분에
도움 많이 받았습니다 !
도움되셨다니 기뻐요 ㅎㅎ 댓글 남겨주셔서 감사해요
댓글 감사합니다ㅎㅎ
감사합니다 자세한 해설까지ㅜㅜ... 잘볼게요!!
봐주셔서 감사합니다 도움되시길 바라요
감사합니다 열심히 마무리 할게요!!
댓글 감사합니다 좋은 결과 있으시길 바라요
감사합니다
봐주셔서 감사합니다 도움되시길 바라요
감사합니다. 잘볼게요 ㅎㅎ
댓글 남겨주셔서 감사합니다 수능 좋은 결과 있으시길 바라요