[박재우T] 다르부 정리와 도함수의 연속성
게시글 주소: https://orbi.kr/00039765358
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보닌 잘못타서 구로역으로 빠꾸하는중 1호선이 두개면 1-1 이렇게 표시를...
-
물론 나 따라서 오르비하는 실친 1명은 제외하고~~
-
내전번이마구마구뜨나봄.. 괜히햇다
-
ㅇㅇ
-
아 웃겨 ㅋㅋㅋㅋㅋ 지방대 썰은 확실히 보법이 다르다 상남자 상여자 집단
-
미적->기하 0
현재 사관학교 목표로 하고 있고 미적하다 기하로 넘어가려고 합니다.부모님은 7월말...
-
20대후반 외제차두대… 금수저아니고 자수성가라는데
-
꿈이랑 꿈의 꿈이랑 분간 못하고 계속 못 깨다 방금 일어나니 식은땀뻘뻘나네
-
?? 5
서카포연고( 서울대 카이스트 포항공대 연세대 고려대) 서성한디쥐유(서강대 성균관대...
-
요즘 춥냐 왜케 4
하아
-
4명 모집했음
-
시험 보다 극심한 타임어택으로 홍콩가버릴듯
-
다들 공부에 관심이 없으시네 쯧쯧
-
애니메이션 1
재밌음? 추천좀 해줘잉
-
저격도 먹고 ㅜㅜ 게임도 못해 공부도 못해
-
미안해 2
혼자서 소주 2병, 맥주1병이면 살짝 제정신은 아닌거 ㅇㅈ?
-
약대6학년입니다 아무거나 물어보세요
-
d== -3/7 ==-9 (mod20)
-
설의 수석이어도 4
나같은 뻘글러더라
-
설의수석은지리네 5
-
22학년도부터 있었던 평가원 모고중에서 미적분 파트만 본다면 작수는 얘네중에 어느정도 난이도인가요?
-
심심한아 미안해 2
넌 나의 좋은 커뮤친구야 사랑해!!
-
멘사 회원 1
멘사 회원 누구나 할수있는거임?
-
literal 사전에서 읽으니 리터럴 리더럴 리러럴 이렇게 들리는데 리터,리더,리러...
-
물리하는게 맞는건가 충청도 지역인재 버릴 수 없는데
-
일클래스에커피쏟아서사망한김에 평소 들어보고싶은 브크를 들었는데요 작년브크 3세대...
-
걱정이네
-
내일 일본 가는데 14
짐이랑 계획 제대로 준비 안 하고 오르비나 하고 있네 에휴 그만하라고 말 좀...
-
저격합니다 7
심심한 님은 남의 게시글에 시비 그만털고 공부나 하세요!!
-
진짜 보면 볼수록 내스타일의 과목이네,,, 하,,, 생물이 백분위에서 유리하다길래...
-
한의대 노트북 0
한의대 예과때 아이패드로만 생활 가능한가요? 데탑은 있습니다
-
공부법 2
걍 n제 벅벅풀기 하루에 수학실모 2개씩 치기 쉬는시간에 몰래 카페가서 케이크먹기...
-
남자가 많긴하네요 당연한건데 사진으로 보니 또 느낌이 색다름 약간 남고에 여선생님...
-
휴 아직 나는 구원받을수있어!!
-
하
-
엔제는 다들 비슷한가요???
-
유툽에 공부법 영상들보면 생각보다 별거아닌게 은근있는듯 1
아침에 일찍일어나는 법이라길래 ㅈㄴ 기대하면서 봤는데, "이 인류에 필요한 존재가...
-
사실 걸어놓기용보다는 부모님이 반수 사실을 모르셔서 학교 등록한거라 최소학점...
-
설의 수석?? 1
나같은 지능으론 매일 12시간 공부해서 죽을때까지 수능봐도 근처도 못가겠노
-
Hospitalize 하스피털라이즈인지 하스피럴라이즈인지 헷갈리네 둘다 되는거임?
-
정상화 근데 복부가 진짜 안 빠지네 으악악
-
VS 대결 24
과연
-
딥시크와 북학의 - 중국을 비웃으며 중국에 위안받는 모순에 대해서 1
아마 똑똑한 여러분들은 제목만 보아도 제가 무슨 말을 하고 싶은지 아실 수 있을...
-
와 핑크.. www.youtube.com/shorts/3zwuOxVQUwE
-
나같은 저능아를 노예취급하면서 함부로 써주면 좋겠다♡♡
-
ㅈㄱㄴ
-
대해린 3병상태 1
집가냐
-
ㅠㅠㅠㅠ 환불도 못받고 외국이라 신고도 못함 ㅠㅠ
-
두근두근오티전날 0
첫번째 댓글의 주인공이 되어보세요.