[박재우T] 다르부 정리와 도함수의 연속성
게시글 주소: https://orbi.kr/00039765358
안녕하세요 박재우 T입니다.
라스트 스퍼트 강의 시작했습니다.
저를 아는 학생들 모두 라스 선택하면 후회없을 거라 확신합니다.
열심히 달려봅시다.
이제 본론으로 들어가서
이전에 한 번 언급했던 적이 있었습니다.
도함수가 연속인지 아닌지 모르는데 도함수에서 사잇값 정리를 쓸 수 있느냐는 문제입니다.
결론부터 얘기하자면 쓸 수 있다 입니다.
물론 이와 같은 주제와 연관된 과거 기출문제는 수업시간에 다루면 안되겠죠 ?
당위성을 위해서 설명해야 하는 것이 대학과정 개념이라면 출제해서는 안됩니다.
그냥 쓸 수 있다라고 단정하고 지나가는 것도 물론 안되구요.
그래서 저는 강의에서 롤의 정리에 대해 많이 강조합니다.
암튼
도함수가 불연속일 수 있음에도 도함수에서 사잇값 정리를 쓸 수 있다는 것을
가능하게 해주는 것이 바로 다르부 정리입니다.
한 번 알아보도록 하죠.
우선 함수 중에서 미분가능하지만 도함수는 불연속인 함수로 거론되는
대표적인 함수가
입니다. 이 함수는 x=0에서 미분가능하지만 도함수는 x=0에서 자명하게 불연속입니다.
이 함수의 경우처럼 도함수가 불연속인 함수는 사잇값 정리를 도함수에서 제약없이 막 쓸 수가 없겠죠
이제 다르부 (Darboux) 정리에 대해 알아봅시다.
<Darboux 정리>
함수 f(x)가 폐구간 [a, b]에서 미분가능하고 구간 양 끝점인 a와 b에서의 미분계수가 다르면
f'(a)와 f'(b) 사이의 임의의 값 k에 대해서 f'(c)=k 를 만족시키는 점 c가 개구간 (a, b)에서 존재한다.
아래 부분은 스킵해도 됩니다. 관심있는 분들만 보셔도 됩니다.
이제 증명 한 번 해보면
인 경우를 생각해봅시다.
폐구간 [a, b]에서 정의된 함수
라 정의하면 명백히 g는 폐구간 [a, b]에서 연속이면서 미분가능합니다.
그러므로 연속성의 정리에 따라 g는 [a, b] 위에서 최솟값 g(c)를 갖습니다.
즉, [a, b] 에서의 모든 x에 대하여
를 만족시키는 c가 폐구간 [a, b]에서 존재합니다.
그런데.
이 되므로 함수 g(x)는 x=a에서 감소상태에 있습니다. 그러므로
를 만족하는 점 d가 폐구간 [a, b]에서 존재합니다. 이제 마찬가지로
이 되므로 함수 g(x)는 x=b에서 증가상태에 있습니다. 그러므로
를 만족하는 점 e가 폐구간 [a, b]에서 존재합니다.
따라서, 점 c는 개구간 (a, b)에서의 원소이고 구간에서 g(c)는 최솟값이므로
구간 내에서 극대, 극소를 갖고 미분가능하면 자명하게
즉,
입니다. 같은 방법으로
도 증명해볼 수 있습니다.
이러한 이유로 정의한 구간 내에서 f의 도함수가 연속함수가 아닐 지라도 연속함수의 경우와 마찬가지로
f의 도함수에 대한 사잇값 정리가 성립함을 알 수 있습니다.
머가 먼지도 모르겠고 그냥 그렇다고 하니깐 쓰자라는 것 보다는
아예 애시당초 이런 문제는 안 내는 것이 상책이라 생각합니다.
그래서 롤의 정리가 수능에서는 더욱 더 깊이 있게 다가오는 것이 아닐 까 생각합니다.
물론 요즘은 잘 안나오는 주제이긴 하지만서두요.
아래 기출 문제를 한 번 봅시다.
다들 아시겠지만 여기 ㄷ지문은 롤의 정리가 더 좋지 않을까요 ?
두서없는 글 죄송합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어떤이들은 고민 않고 쉽게 살아가지만 그 보다 좀 더 예민한 난
-
가격 50정도 차이나는데 대치랑 평촌이랑 차이 큰가요?
-
유튜버 비밀이야 서울과학고 - 서울대 토목공학과(현 건설환경공학부) 졸업 전공과는...
-
확통이고 3덮 72떴습니다 작년에 최저만 맞춘다고 수학을 아예 놔버려서 작수...
-
노베 공부 일기 0
작년 8월 군대에서 책을 읽던 도중 갑자기 대학교에 가고 싶어졌다.신병 때 고졸...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 8문제 푸는데 공부량은 공통 그 이상이라네~
-
탐구 뭐선택하심?
-
영어를 70분동안 해야된다는거자나 안칠래
-
코케숲 0
코 큰 케인인님이 숲에남을껄이라고 후회합니다. 후회 하고있어요~
-
피곤해서 할수가없네 하
-
스블 드랍할까 3
미적 스블 렉쳐7까지 들었는데 진지하게 배운게 없음 수업 내용이 0.3 김현우임;;
-
로망
-
창렬인데 그냥 먹을게... 옆에 바로 편의점인디
-
전적대까지 하면 세 개 태그해야하는데 ㅋㅋㅋ 화려한 경력
-
하 벎서부터 지친다 에효
-
제발.
-
굴려진 애인지 그냥 착실하게 한애인지 놀다가 늦게 정신차려서 온애인지 다 보임 나는...
-
학교에서 발생했으니 그나마 다행
-
수능날 그 심장떨리는 느낌이 안난다
-
저는 평균적으로 10500원정도 한끼에 쓰는거같은데 너무 사치부리는거같음? 뭔가 양심에 찔려서
-
4덮 치는 사람들 13
오늘 언제 잘거에요 똑같이 새르비?
-
오르비에선 그럼 반박안받아요
-
가자 팀 기트남어
-
2q할걸 그랬나 그래도 13번인데
-
작년 교재에 비해서 100페이지가 짧아졌던데 혹시 이유가 있음?
-
2406왤케 어려움 제에발 물문학 불독서 22수능의 재림 제에발
-
이거 사람이 다룰수있는게 맞는건가
-
청소년 백일장이 찾아보면 종류가 되게 많은데 당선작들보면 진짜 벽 쎄게 느껴져서 바로 포기함
-
뭐? 나말고 이정도 좃찐따가 또있어?
-
힝 나 야자 안하는데..
-
?
-
난 제주의다.
-
넓은 관점에서 보았을 때 크게 가치가 없어보임 국토가 다이나믹하게 넓으면 모를까.....
-
여기서 '태(苔)'는 이끼를 뜻하는 한자이고 이사부의 '異斯(이사)'와 대응됨....
-
재종 조언 ㅠㅠ 0
국수영사문물리 33144 지금 독재하다 벽을 느껴서 재종 급하게 찾는중인데 어느정도...
-
고기대해산물은 4
압도적이네
-
설레구만
-
수학포기하지말껄 20
그때 했으면 지금 얼마나 잘했을까 뼈저리게 후회하는중
-
이젠 곁에 없지만 아직 잊지 못하고~ 너를 잊지 못하고오
-
다시 애니프사로 복귀 14
고능아가 된 기분입니다.
-
2등급인 학생을 찢어버리려고 만든 엔제같은데
-
반수생 사탐런 1
작수 생지 33 나왔습니다 생명은 그래도 자신있었는데 평소에 풀면 잘 풀리다가도...
-
으아악!!!! 0
내 동 아파트에서 시립대 과잠이~~~~!!! 숨겨왔던 열등감이 으악!!!!
-
이제야 평가원이 너무 학술적인 독서를 안내면서도 컷은 90초~80후반으로 맞추는...
-
시발@점 끝냈는데 개념이 좀 부족해서 한번 더 돌릴려는데5월시작늦을까요? 목표는 2등급입니다 ㅠㅠ
-
난 맞말이라고 생각하는데 뭐라하는 사람도 좀 있는거보니까 약간 큰일났을지도..
-
좃댓네 1
하
-
나 어렸을때 테스트 봤었는데 두개인가 풀었었음 ㅋㅋ
첫번째 댓글의 주인공이 되어보세요.