[칼럼] 이 풀이 가능함?
게시글 주소: https://orbi.kr/00072772745
안녕하세요
이대은입니다.
오늘도 나름 재밌는 주제로
찾아왔습니다!
풀이를 들으면 누구나 이해가능하지만
본인 스스로 풀 때는 쉽게 떠올리지 못하는 내용에
대하여 적어보겠습니다!
바로 문제 보여드리겠습니다.
그 전에 좋아요, 팔로우 한 번 부탁드릴게요.
1. 가장 무식한(?) 방법
아마 거의 없겠지만
직접 모든 실근을 구하려고 한다면
주기함수임을 이용하여 등차수열로 나타낼 순 있습니다.
다만
이렇게 직접 실근을 구하는 방법은
조건을 해석하려는 시도 없이
그저 머리에 떠오르는 풀이를 바로 진행하는 경우입니다.
이렇게 공부를 하는 학생들은
시검시간이 부족할 가능성도 높고,
조건이 복잡한 문제는 해석을 못 할 가능성도 높습니다.
2. 그래도 이 정돈 다들 하지 않을까
아마 이 글을 보는 학생분들은
아래의 내용은 이미 아실 것으로 생각합니다.
위의 내용을 이용하면
아래 그림과 같이 직접 교점의 좌표를 구하지 않아도
실근의 합을 구할 수 있습니다.
아마 이 그림을 그린 학생이라면
대부분 각 주기가 선대칭이므로
를 이용하고
대칭축도 주기함수임을 이용하면 등차수열이므로
대칭축의 x좌표를 일반항으로 나타내면
이다.
이때
주기의 개수가 닫힌 구간에 총 10개이므로
모든 실근의 합은
을 이용해 구할 수 있습니다.
3. 시야가 넓은 학생이라면
2.에서의 풀이는 사실
아마 대부분의 학생들이 사용하지 않을까라고 생각합니다.
하지만 위에서 언급한
이 내용을 이차함수나 삼각함수처럼
방정식의 실근의 합이 자주 나오는 형태에서만 사용하지 않고
대칭축을 이용하여 실근의 합을 빠르게 구하는 원리를 알고 있는 학생이라면
아래와 같은 풀이를 사용합니다.
이 논리로 문제를 풀면
조금 과장했을 때
그래프를 그리지 않고도
를 이용하여 바로 구할 수 있다.
기출문제를 분석할 땐
기출문제를 단순히 풀었다에 만족하지 말고
이 글의 내용처럼 다양한 풀이와 빠른 풀이가 가능한 이유를 찾는 것이
가장 중요합니다.
위에서 말한 것처럼
이차함수나 삼각함수를 활용한 실근의 합에서 대칭축을 이용하는 풀이가
왜 가능한지 파악하지 않고
단순히 늘 나왔던 식으로만 나와야 사용가능하다면
요즘 트렌드인 준킬러의 난이도나 생소함이 높아진 체제에서는
큰 힘을 발휘하지 못 할 가능성이 매우 큽니다.
오늘의 글은 여기까지입니다.
지금 이 시기 정말 중요한 시기입니다.
시기적으로나 컨텐츠적으로나
기출분석을 할 수 있는 시기는 거의 끝나갑니다.
벚꽃, 날씨 등의 요인으로
정말 중요한 이 시기를 놓치지 마시고
꼭 기출분석 열심히 하시길 바랍니다!
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
[칼럼] 예고했던 그 글
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 1 답글 달기 신고
-
좋아요 1 답글 달기 신고
-
좋아요 1 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
첫 맛은 일반 펩시랑 크게 다르진 않은데 끝에 약간 풀맛? 민트향이 은근하게 나는...
-
나 초딩때부터 했으니까… 시간이 많이 흘렀네요
-
둘다 5로 찍었는데 1번이라니 ㅠㅠ
-
EBS 배경지식 교재의 시대를 열었던 이배이 시리즈입니다. 저희는 올해도 출판...
-
초반에는 저조한 참여율 때문에 많이 걱정했지만, 총 열 분께서 참가해 주셔서 다행히...
-
8모(2022,2027~) 8모 5년만에 부활
-
배 아퍼 4
크악
-
더프수학 0
18 19틀렷는데 ㅇㄱㅈㅉㅇㅇ?
-
댓글 달아주시면 만년필로 닉네임 정자체로 적어드려요 19
많은 참여 부탁드림뇨
-
9,10 ㅋㅋㅋㅋㅋ
-
그렇게 했는데 나는 왜 안 나왔지
-
그야
-
이번에 덮 처음 본 07인데 진짜 너무 어려웟거든요? 문학도 두 지문 거의 못 푼...
-
인강교재로 자습하면 힘들겠죠?
-
5분씩 쓴듯,,
-
국 영 사탐은 공부하니깐 1 찍히던디 수학<<<얘는 공부 박아도 4나옴....
-
미적분 한완수 하면 시발점 수분감 뉴런 다 포괄하는 내용임? 현역이라 인강 들을...
-
.
-
그 2번 부여될 이랑 5번 기반하여 였나? 그거 둘다 말되는것같아서 ㅈㄴ 고민하다...
-
4덮 88 4
ㅁㅌㅊ?
-
ㅇㅇ?
-
풀면서 아ㅋㅋ ㅇㅈㄹ로 확신하면서 풀었는데 틀림 연산실수한것도 몇개 있어서 최악의 점수야...
-
막 그렇게 쉽진 않았던거 같은데...
-
밥먹기도싫네그냥 2
하 ㅋㅋㅋㅋ 28번 이새끼한테 30분 박고 멸망함
-
체감 난도상 80 초중반 같은데
-
저능 ㅇㅈ 3
작 11덮 현장응시 ㅋㅋㅋㅋ
-
4덮 22번) 2
-
4덮 15번) 1
-
덮 국어 나만 어렵냐 12
고정1인데 문학 2지문 날림.. 언독문임
-
5번했는데 부호 왜틀렸지
-
난 어려웠는데 다들 점수가 왜이러냐? 작년 4덮보다 점수가 낮음 ㅋㅋㅋ
-
물론 안풀긴함
-
제발제발제발
-
아니 14번 5
2+3-4+0 맞죠? 여기까지 구하고 답 2번찍음 ㄷㄷ
-
.
-
무시 ㄴㄴ
-
사문 백분위 100이 생1 백분위 96보다 점수가 부족하네 사탐런 중약성적이 또 연치가 됨…
-
93 입갤
-
네.
-
여긴 너무 잘해 3
나는 있을곳이 아니야..
-
덮 수학 0
88 무보 1 ㄱㄴ?
-
형은 88점일듯..
-
ㅈㄱㄴ
-
못풂 ㅋㅋㅋ
-
고전소설 어땟음 5
또 고전소설만 날림
-
4덮 국어 3
화작 + 독서론은 20분컷 냈는데 문학에서 38분걸려서 폭4함..
-
제목 세게 말해서 죄송합니다.. 25 수능 언미영생지 백분위 98 99 1 98...
-
각각 답 정확히 구하신분 있으면 공유좀요..
-
잉 ㅜㅜㅜ
-
4덮 수학 84 1
무보 1되나요?