사문 도표는 평가원이 어마어마하게 봐주는 겁니다
게시글 주소: https://orbi.kr/00072870151
그에 대한 증명은 아래 문제로 갈음하죠:
쉬워 보이죠?
한 번 풀어 보세요 ㅎㅎ
'특정 키워드 또는 개념'의 언급과 함께 가장 먼저 답을 달아 주시는 분께는
2만 덕 드리도록 하겠습니다
그러니 일단 메인 보내주세요ㅋㅋ
0 XDK (+10)
-
10
-
숫자 맞추면 5만덕 14
8시쯤에 썼는데 네자리
-
강평 0
업
-
이계 5
도함수
-
아말님고
-
어떻게 하시나요 여러분은
-
걍 내 몸이 자동으로 루틴을 깨려고함요
-
드릴 3,4,5 공통+미적 세트 사실 분 있으실까요? 다 새거입니다.
-
내 레벨 아이민만 보면 삼수생급 아님요?
-
감각적으로
-
비율관계 0
이미지
-
톱을 노려라 라는 작품 보면 좋음 같은 가이낙스 회사에서 만들어서 당연히 그렌라간에...
-
2시 15분까지 6
덕코를 가장 많이 보낸분한테 만덕 드림
-
오리비하는 당신 2
본인이 찐따라 생각함?
-
한종철 자분기 15문제 2206 문학세트 2509 독서세트 품 현우진 킬링캠프 3회...
-
안녕하세요? 여러분은 싸가지없는새끼가 뭔지 아시나요? 2
(사진1 제시)
-
이감 하반기 패키지랑 한수 5회분 사놨는데, 매일 아침에 1회씩 풀거라 부족해서...
-
정말 아무것도 모르는 뉴비라서 어디부터 시작해야할지 막막하네요 제가 뭘 모르는지도 몰라요
-
우!흥
-
우웅~
-
고2 정시밀고 있습니다. 수1은 아이디어를 들어서 수2도 아이디어를 들으려고...
-
우웅
-
목동의 문학소년 소녀가 울텐데
-
내가 sbs 좋아하는 이유중 하나였는데.......
-
씻기귀찮다 10
아침에 앞머리만 대충 감아야짐 ㅋㅋㅋ 다들자거라
-
일단 난 자러감
-
https://orbi.kr/00073016521 엊그제 같은데..
-
설뱃들 주목 4
맞팔해여
-
근데 국어 연계 사설컨 많이 풀면 되는거 아닌가요? 5
연계공부 빡세게 안 했는데 저절로 돼버림
-
이차곡선만들때마다진이빠짐
-
뭐임
-
그런 칼럼들을 다시 볼 수 있는 시스템이 활성화 되어 있으면 좋겠네요 칼럼러들 독포...
-
불안감 조성하고 난 자러 가면되는거임
-
주세요 가챠 1만회 ㄷㄱㅈ 수수료 제하고 당첨금 환급.
-
잘자요오르비 2
-
방학땐 걍 그럴까싶음..
-
근데 이게 1
사평우형님 메타 맞냐?
-
손창섭. 다만 잉여인간 같은 상 받으려고 쓴 소설 말고 손창섭스러운 소설이 나와야...
-
의외로 4
오늘은 새르비에 사람이 없음.
-
아 루틴 깨질 생각하니까 짜증남요
-
레어가 신기한게 3
덕코로 살 수 있음.
-
살면서 저기서 단 한번도 노는애 못봤다 다 서바 강k 심찬우 에필로그 심찬우 생글생감 풀고있다
-
7월은 2
31일이 마지막날임
-
저도덕코좀 8
-
가 지금까지 한국에서 받아본 것보다 압도적으로 많음 안 오는 날이 없음
-
실패
-
근데 지금자면 0
8시간 뒤에 9시 53분임
-
까먹을뻔 ㅋㅋ
-
내일도 오전 과외가 있는데 그래도 내일 오전 과외가 끝나면 짧은 여유가 생겨요...
-
근데 지금은 2
새벽임.
-
자야하는데 0
라칸 어딨냐?
사문 허수는 지나갈게요...

교집합 ㄷㄷ뭔가 이번 더프 15번이랑 논리가 비슷한데
-
근데 논리는 완전 다릅니다
윗댓 왜 블라인드 됐죠? 그냥 무난한 댓이었던 것 같은데
가중평균값의 원리, 답1번?

2만덕 보내드렸습니다감상평 부탁해요
이차방정식 나와서 깜놀...ㅋㅋ
결국 "배운 거 안에서 나온다"라는 마인드가 젤 중요한 듯요
문제 잘풀었슴다 ㅋㅋ
의도한 건 '이차방정식'이긴 한데
생각해보니 이게 핵심은 아니군요
그건 그저 계산의 수단일 뿐 ㅎㅎ..
풀어보실 분들을 위해)
ㄱ10 ㄴ6 ㄷ8 ㄹ8
사실 가중평균 올해 69수중 한번은 나오지 않을까 예상하고 있긴 함요
문과표본은 거의 초토화 가능한 카든데 그동안은 사설에서만 간혹 나오고 핑까원이 아껴둔듯
'분모 다른 가중평균'
그냥 개박살내버릴수있는 카드죠 ㅋㅋㅋ
이런 풀이 의도하신건가요?
빨강 - 파랑 - 초록 - 노랑 - 검정 순 풀이에요
기존 기출들과 결이 비슷한듯 다르네요.
계산량은 훨배많고..
평가원은 보통 "중복 수급자"라고 쓰던데
"공동 수급자"라고 쓰는건 의도하신건가요?

'단독' 때문에 의도한 게 맞죠이걸 캐치하시다니
저도 풀이 검토좀...ㅎㅎ
+"분모다른" 가중평균 이게 정확히 뭔 뜻인가요?
이해보단 암기•활용에 초점을 맞춰도 문제가 다 풀리길래 이해를 간과했나봐요
의도한 바입니다 ㅋㅋㅋ
분모 다른 가중평균은,,평가원 교육청엔 예시가 없긴 한데
23년 고3 10월 19번에 가중평균 추가한다 생각하심 됩니다
사문런 했는데 올해는 불지옥으로 나올거 같아서 빡공중
도표 어려워지면
사탐런한 이과들이 다 먹을까봐 그래준다고 생각하면 문과 입장에선 참 고마운..
어우 저게 뭐야 ㄷㄷ
응애 이과붕이 이런 거 몰라
이러면 곧 수상할 정도로 유전 퍼즐을 잘하는 사문러들이 1컷 48 만들어내서 안 됨
분모 가중평균은 화학이라 괜찮음
설마 화생러가 넘어왔겠어요?
화학 사문을 선택했던 나
피셋 자료해석 문제를 풀어보면 됩니다라는 궁예를 했는데 fail
더이상 이정도로 안 나온다는 게 사탐런 현상의 장점인듯요
사탐은 표본이 변별이다
거의 10분 썼네요; 분모 다른 가중평균이 뭔가요?
사문의 화학화 ㄷㄷ
전체의 (가)단독 비율 8퍼센트인데 AB지역 단독이 같으니까 둘다 8퍼센트갰지 해서 풀면 ㄱㄴㄷㄹ이 연쇄적으로 구해지는 구조 맞나요?
헐 그 방식이 있었군요
원래 의도는 가중평균 때려서 이차방정식 푸는 건데, 상상도 못 했네요 ㅋㅋ
제가 계산을 극혐해서 걍 저렇게 풀었어요 ㅋㅋ
뭔가 화학 풀 때 느낌나네요ㅋㅋ 사설에서 약간 이런 문제 보이면 화학적 무언가가 깨어나는 느낌이었는데.. // 사탐도 충분히 과탐 이상으로 출제 가능하실 것 같아요 정말 마음만 먹으신다면ㅋㅋ 사실 지금 과탐도 이렇게까지 나올 건 아니었는데 너무 심해지는 걸 보면..
글 잘보고있습니다 사문 저번주에 시작한 군수생인데요 높3 낮2정도를 목표로하는데 도표도 다 맞춘다는 생각으로 공부해야할까요? 국영수가 좀 미흡한 상태에서 사문개념도표까지하기에 시간이 부족하더라구요..ㅠ 사문이 처음이라 어디부분이 킬러,준킬러인지를 몰라서 전략적공부가 안되네요 ..ㅜ