[칼럼] 예고했던 그 글
게시글 주소: https://orbi.kr/00072684985
안녕하세요
이대은입니다.
오늘은 전 글에서 예고했던
내용에 대한 칼럼으로 돌아왔습니다.
시작 전에 팔로우, 좋아요 부탁드립니다!
분명 다음 글도 도움이 될 겁니다. :)
바로 문제부터 보여드리겠습니다.
출처는
2022학년도 수능 13번
입니다.
*자세한 해설은 아래 해설강의 보시면 됩니다.
1. 아마 이렇게 풀었겠지
우선 제가 수업 중에도 풀려보면 아래의 풀이처럼
대부분의 학생들이 두 점을 지나는 직선 두 개를 구해서
y절편이 같다는 관계식을 직접 구하는 경우가 많습니다.
직선의 y절편이 같다고 나오니
두 직선의 방정식을 구해서 y절편끼리 같다는 관계식을 구하는 겁니다.
위의 두 관계식을 이용하여
미지수 두 개를 구할 수 있다.
이 풀이는 논리적으로 명확하기에
답을 구하는 과정에서 아무 문제가 없습니다.
이렇게 풀이를 시작하는 학생들은
상위권이 되려면 갈 길이 멉니다.
말이 직설적이라 논란이 될 수 있지만
이런 식으로 푸는 학생들은 평소 문제를 풀며 공부를 할 때
단순히 무의식에 풀어내기만 하려는 학생일 가능성이 크기에
아무리 많은 문제를 풀어도 성적향상으로 이어질 가능성이 매우 낮습니다.
스피드퀴즈처럼
문제를 읽고 신나서 손이 먼저 반응하는 학생들은
절대 수학점수가 잘 나올 수 없으니
아래의 글을 읽고 본인이 해당되는지 판단해보세요!
2. 상위권은 절대 손이 먼저 반응하지 않는다
문제의 난이도를 조절하는 방법은
여러 가지가 있습니다.
조건해석 자체가 어려운 경우도 있지만
계산량을 늘려서 난이도 조절을 하는 경우도 많습니다.
계산량을 늘리는 문제의 경우
조건끼리 유기적인 관계를 이용하면 계산량을 훨씬 줄이는 경우가
많습니다.
최근에 중요한 시험이 끝나면
계산량이 많거나 어려운 문제에 대하여
화려한 풀이가 소개됩니다.
이런 풀이의 핵심은
시험이 끝나고 배우는 게 아니라
시험 도중에 본인 스스로 떠올리는 것입니다.
우선 풀이를 소개하기 전에
여기서 말하는 화려한 풀이는 절대 근사처럼 교육과정 밖이 아니고
조건해석의 관점에 따라 계산해야 하는 부분을 줄이는 것을 말합니다.
이 문제를 보면
네 점을 봤을 때 위아래를 두 점씩 나눠서 보면
y좌표의 비율이 1:2로 일정한 걸 파악할 수 있습니다.
이런
사소한 특징을 의심하고 집착해서 조건을 해석하려 노력하는 태도가
현명한 풀이를 떠올릴 수 있는 가장 중요한 단계입니다.
비율이 같음에 의하여
어떤 특징이 있나를 고민해보면
아래와 같은 결론이 나옵니다.
그림 먼저 보여드리고 설명해드리겠습니다.
그림을 보시면
두 직선을 지나는 점을 보면 y값의 비율이 1:2 이므로
직선 위의 두 점에서 x축까지의 비율이 p:q로 같습니다.
따라서
각각의 직선 위의 두 점의 수선의 발과 x절편을 이용하여 직각삼각형을 만들면
분홍색으로 표시한 가로 길이비가 같아야 합니다.
이때
두 직선의 수선의 발끼리 길이가 b-a로 같기에
x절편까지 비율이 같음을 이용하면
두 직선의 x절편은 서로 같아야 함을 알 수 있습니다.
그런데 문제에서 두 직선의 y절편이 서로 같다고 했으므로
라는 결론을 얻을 수 있습니다.
세 점
이 한 직선 위에 있어야 하므로
에 의하여 다음과 같은 관계식을 구할 수 있습니다.
맨 처음에 직선의 방정식을 구해서 푸는 풀이보다
훨씬 빠르게 같은 관계식이 나옴을 알 수 있습니다.
*해설강의
위 두 가지 풀이를 보시면 아시겠지만
같은 문제도 어떻게 푸느냐에 따라 풀이길이가 다릅니다.
우리가 기출분석을 할 때는
단순히 답을 구하는 것에 목적을 두면
이런 풀이를 학습하지 못하게 됩니다.
또한
이런 풀이를 이해하더라도
처음보는 문제에서도 본인 스스로 떠올리지 못하면
아무 의미가 없습니다.
따라서
이런 풀이를 이해하는 것에만 포커스를 두지 말고
왜 그런 풀이를 떠올려야 하는지 당위성을 반드시 파악해야 합니다.
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅅㅇ 나가 0
이숭용 나가
-
일단 난 탄핵 인용에 9만덕 있는거 싹 걸 생각 있음
-
최선을 뽑는게 아니라 차악을 뽑는 투표라니 ㅋㅋ
-
풀어보신분?
-
빅포텐 4규 펀더멘탈 이해원 드릴 엔티켓 시즌2 추천 받아요!
-
12시간남았다 0
-
쉬운거 하나도 없습니다...
-
시대 재종 3월 23일인가 원서접수해서 28일에 입학하라고 문자와서 입학했는데...
-
오늘 미장 뭐냐 0
-
호감고닉 4
비호감뉴비
-
돈 다 모아서 알바도 관둠 미적사탐 03년생 렛츠고
-
이런글 오르비에 처음 써보네요... 지인이 몇명 겹치긴 했는데 그당시엔 일부러 잘...
-
오랜만에 왔는데 4
왜 메인에 내글이 두개나 있는거임 ㅋㅋ
-
으흐흐♡
-
옯만추 삼행시 5
옯비언 만지면 추행범
-
전 지문 등록이 안되어있는데 어케 들어가나요?
-
취업 시켜주고 취업 시켜줌
-
첫키스는 남자랑 했는데,,,,,,,
-
비정상인거죠? 리밋 한바퀴 돌렸고 복습도 꾸준히 했는데
-
다 아는 사람임 미치겠다 공부질문글에 구걸할수도 없고 아이고
-
대학, 고등학교 동기 제외 옯만추 한명 (한명은 될뻔하다 실패) 2
ㅇㅇ 다음 목표는 슈ㄴ이다
-
아에 안함?
-
옯만추 할 사람 8
20살 되고 선착순
-
기상 2
Lㄱ하ㅗㅠ
-
변표 이후에 낙지에서 사탐 표본들 사라지지 않았나요 아는 옵붕이?
-
쪽지? 인스타 교환? 지역 다를수도 있지 않ㄴ나요
-
탄핵되고 나서 유서 한장쓰고 '계엄, 아내가 했습니다' 한마디 발표한 후에 관악산...
-
문제가너무얌전해 7
지킬선은다지키면서톡톡튀는문제를만들고싶다
-
한 11시 30분이 피크인가 피크닉인가 피카츄인가
-
다들 잘 지내시죠? 오랜만에 들렀다 문득 그때가 생각나서 글 써봐요 저를 기억하는...
-
펩시 라임 아침에 하나 밤에 하나 몬스터 피치 점심에 하나
-
한번호로 밀어서 3등급을 맞던 아랍어이야기를 해주마
-
나만 수험판 탈출 못햇어 시발ㅠㅠㅠ
-
한번 사보고는 싶은데 귀찮...
-
어떡함
-
ㅈ같아요
-
영탐탐도 같이 하는게 더 좋으려나
-
진짜 그지가 되.
-
사유: 안국역과 충무로역은 지하철로 4분 거리
-
내일 어떻게 참아요 진짜
-
ㄹㅇ임
-
퓨ㅜ
-
(시대 3월례 끝자락 500등까지 설대식 표점 순) 설대식 표점 /누적 백분위 본인...
-
수학 풀 게 넘쳐난다 서킷 브릿지 엑셀 드릴 야무지게 먹어야지
-
힘들다 0
전공 공부 힘드러 과제도 짜증나 뭐 어떻게 하라는 거야
-
의미없이 전화기만 자꾸만 들었다 놨다 이 밤이 또 지나가는게 너무 아쉬워 잠 못 드네
-
외모 정병 때문에 마스크 쓰고 다녀야겟,,;;
-
임정환 김종익 0
생윤 잘생긴 윤리 듣고 임정환 임팩트로 넘어가는거 별론가요?
-
궁금

감사합니다
엇 감사합니다
저는 상위권이 되려면 멀었군요...ㅠㅠ근데 이 내용 옆동네 출제자 분도 언급하신 걸 보면 중요한 것 같아요:)
아닙니다 ㅎㅎ 그저 자극적인 내용을 적다보니,,,,,,,,ㅎㅎ
한 문제로 판단하긴 그렇고 열심히 하신다면 충분히 상위권이 되실 겁니다!

감사합니지아직 배울게 많네요..

엥 전혀 아니실 것 같은,,,,
의벳님아 가장 좋은 해설인듯 합니당 이 문제 해설 저 버전 볼때마다 원점지난다 사후적이라 생각했는데 x절편도 같다 = 즉 원점 이 발상이 필요하네여

엇 좋은 말씀 감사합니다