[박주혁t] 3월 교육청 모의고사 논평 + 한문제 해설.
게시글 주소: https://orbi.kr/0004420662

안녕하세요? 올해도 쌍둥이들 때문에 정신없는 박주혁t 입니다.
(많이 컸지요? ^^)
며칠전에 3월교육청 모의고사가 있었습니다.
(제가 있는 학원은 오늘 치렀어요~)
이번에는 매우 충격적인 고3 등급컷이 떴지요ㅠ
(충격적인것은 A형 이야기 입니다. B형은 뭐 예상대로?)
하지만, 다들 아시죠? 3월 모의고사는 우리가 올해 치러나가야 할 수많은 모의고사 중
단지 '첫번째 모의고사' 에 지나지 않는다는 것을요.
간단히 논평하자면,
첫번째,
A형이던 B형이던 계산량이 '많다'고 생각하시는 분들이 계시다면,
앞으로의 계획에 "수학은 수학(手學)이다" 라는 말 정도는 포스트잇에 붙여두시고
1년동안 열심히 연산연습을 하실 필요가 있어 보입니다.
이 정도의 연산량은 90분안에(100분 아니고요) 커버하실 수 있어야 합니다.
A형이던 B형이던, 최근의 추세가 기본연산량이 어느정도 확보된 사람에게는 그닥 어렵지
않은 문제도, 기본연산이 부족한 분들에게는 뒤로갈수록 '지옥문(!!)'이 열리는 문제들로
바뀌는 걸 눈앞에서 많이 목격한 바가 있어 드리는 말씀입니다.
그런 상황이 되면 멘탈은 뭐.... 말할것도 없겠지요?
아직은 꽤 많은 시간이 남아있는 관계로,
꾸준히 훈련하시면 기본연산량은 충분히 커버하실 수 있을거라 믿습니다.
두 번째는,
이번 시험을 통해서 본인의 약점을 찾으시면 되는 것인데요.
(물론 모든 모의고사가 자신의 약점체크용으로 쓰이는 것은 맞습니다.)
이번 시험을 치르시면서 다시한번 '고등수학' (고1과정)을 꼼꼼히
체크하는 기회가 되었으면 합니다.
이과야 말할 것도 없고, 문과도 기본적은 고등수학의 개념들은
본인이 구멍난 곳이 있는지 꼼꼼하게 체크해 보시고 넘어가야 할 것 같아요.
기초를 튼튼히 쌓아야 흔들림없는 실력이 만들어 지니까요.
딱히 많이 어렵거나 하는 문제들은 아니었지만,
무한등비급수 도형문제가 좀 신경쓰여서 이 문제는 풀어보려고 합니다.
이 문제를 푸신분들은
제가 작년에 쓴 글인 '닮음을 보는 눈' 을 같이 읽어보시면 좋을것 같습니다^^
(링크 : http://orbi.kr/0003659165 )
자, 문제를 한번 볼까요?

이 문제 였고요,
(아직 안 풀어보신 분들은 풀고나서 읽으세요~)
이 문제의 교육청해설은


입니다.
물론 두 풀이도 나쁘지 않습니다만,
닮음을 보는 눈에서 강조한 '보조선'을 조금 다른 방향으로 이용해 보겠습니다.
(교육청 해설의 다른풀이와 기본적으로 같은 풀이입니다^^)

이해가 가시나요?
변을 연장해서 한변의 길이가 4인 직각이등변 삼각형을 만들면,
A2B2C2D2 의

항상 특수각이 사용되는 상황을 신경쓸 필요가 있고요,
이 문제는 45도 라는 각도가 난무하는 문제이므로, 보조선을 이렇게 저렇게 해 볼 필요가
있다고 봅니다.
꼭 이렇게 풀라는 건 아니지만,
제가 쓴 칼럼과 함께 보시면, 뭔가 얻어가는게 있을것 같네요^^
이제 시작인 만큼, 계획 잘 짜셔서 좋은 결과 만들어 봅시다~~~
p.s. 수비 2015 강좌는 준비중입니다~ 아마도 4월초 정도에는 오픈할 수 있을것 같네요^^
ATOZ가 늦어져서 죄송하고요ㅠ 3월부터 일정을 조정해서 가능한 빨리 진행하겠습니다.
(미분ATOZ는 다음주에 완강됩니다ㅠ 늦어져서 거듭 죄송하다는 말씀 드립니다ㅠ)

0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
검을테면 철저히 검어라 단 한개의 깃털도 남기지 말고
-
아니근데너무졸림 3
어캄
-
1학기때 3.0은 나와야 되는데 그래야 2학기때 수능 공부하면서 1점대 맞고 딱 2...
-
쪽지 주세요 ! 현우진 뉴런 김범준 대성마이맥 메가스터디 메가패스 강민철
-
잘잤다 6
나 집까지 어케 온거지 기억도 안나네
-
진짜 뭐지
-
킬링캠프 2
현우진 킬링캠프 3모기준으로 몇점정도부터 풀면 도움될까요?
-
시작 전에 제 개인적인 생각임을 미리 밝힙니다. 사전을 찾아봐도, 국립국어원 답변을...
-
2일 연속 떡볶이 먹어서 그런가 걍 웬만하면 당분간 굶어야겠음
-
맞팔구 1
한명이 팔취함 80은 유지해야됨
-
일단 병인양요랑 유럽짱깨 있는데 유럽짱깨는 걍 인터넷발 억지여론이고 잘 모르겠네...
-
파키케팔로사우르스임
-
식곤증 안오게 샐러드 마려운데 걍 백양누리갈지 고민되내
-
각잡고반수하기 0
슈웃
-
프랑스도 한국 안좋아하겠지만..... 뉴스 댓글보니까 부정적으로 보네 하긴...
-
ㅇㅂㄱ 0
기상
-
기파급 영어 1
서점에 파나요? 상하 둘다 사야하나요?
-
누굴 뽑아야하나 1
이미 글러쳐먹었지만 출산율 문제 해소 할만한 정책 구상 가능한 인간 뽑고 싶은데
-
본인의 눈치로는 쭉 보면 3사 다 쓰고있는거같은데 직원한테만 주나
-
퀄은 어떤가요???
-
평가원 #~#
-
본 칼럼은 물개물개님의 칼럼 대회에 제출한 칼럼의 수정본입니다. 급하게 썼던지라...
-
과외, 헬스, 데이트 무한반복 캬캬
-
근데 작년에 수능 이틀전에 감기걸렸을때 빨리나으려고 증상보이자마자 약먹고 하루종일...
-
저뿐인가요? 차라리 모고 돌릴때가 제일 집중 잘 되는거 같네요 ㅜㅜ
-
이번에 수능까지 염두에 두고 수학 과외 구하려는데 팁이나 에티켓 있을까요? 받아보신...
-
아니 음향 측심법 할때 당연히 왕복 거리니까 깊이는 속력 x 시간 x 1/2이겠지
-
지문에 나래이션: "A는 너무 힘든 상태에 있다." 라고 써있으면 나래이션을 통해...
-
좋아보여서 샀어요 인강 듣기도 시간 아까워서 틈틈히 읽어보기로 올해는 이거다
-
미친 하루 1
시험과 시험공부와 과제를 동시에 하는 날 ㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂ
-
2년 동안 과외 받고 기출도 4회독 했는데 4등급이면 걍 구제불능 맞죠?
-
중간 후기 1
b가 보인다
-
아는애가 툭툭 건드려서 뒤돌아봤는데 그 옆에 있는애가 대놓고 와 개못생겼다 이러더라 이게 맞는건가
-
단모음 외울때 4
학창시절에 기억나시나용 ㅋㅋㅋㅋ 저는 1번으로 외웠긴합니다 투표 ㄱㄱ
-
12시에 만나요
-
기저귀가 좋음 4
basis ear임
-
지금까지 뉴분감이랑 n티켓 시즌 12랑 이해원 n제 풀었는데 풀다가 제가 모르는...
-
난 굉장히 재밌었는데..
-
공하싫 0
수특풀기싫어어크아악
-
과외로 명품 살 생각하지말고 나도 돈모아서 주식 코인 인베스트먼트나 해야겠다
-
딸피라서 장난도 못치겠음 맨날 썼다 지움
-
더프 등급컷 2
어디서봐요? 나온게 확실해요????????? 화작 미적 물르 알려주세요
-
리버스 아이돌임
-
본1 기준 만 21세 2억이면 엄청 많이 모으는 거 맞죠?
-
오늘도 즐거운 달구와 안녕~
-
재수를 안하니깐..
-
PPT에 개 고양이 사진 자주보니까 공부하다가 사진보고 화풀림 그리고 교수님 설명에...
-
너무 잔인할거 같다
-
가능할까요? 7
도로랑 조급 가깝게 걷고 있었는데 차가 물웅덩이 밟고 지나가서 젖음 사과도 안하고...
-
듣기만 안틀렸어도 3,4덮 둘다 80중반인데 자꾸 두세개씩 나가네
잘 읽고 가요~
그런데 혹시 작년 WP시리즈는 언제 강좌가 삭제되나요?
풀고 강의 들으려는데 꽤 오래걸리네요...
wp는 아마 6월 지나야 시작할 것 같으니까요~ 그때까진 괜찮을 것 같습니다^^
선생님 안녕하세요 작년 EE반 학생입니다ㅋㅋㅋ
올해는 어쩌다 보니 반수 하게 됬네요ㅠ
정말 중간에 쌤 반으로 옮겨 가서 처음 들은 수업은 진짜 놀라웠어요ㅋㅋ
올해 수학은 쌤만 믿고 가려는데 한완수 랑 쌤 강의 커리 전부다 듣고 100점 맞을수 있겠죠??
쪽지 답변 못해서 미안ㅠ
(답장 보내려했는데 삭제되어서)
우선 100점은 모르겠는데^^
96점은 가능할 수 있지 않을까?
자세한건 다시 쪽지 줘~
쌍둥이들 완전 귀엽당 ㅎㅎ 즐거운 파이데이 보내세요 ㅎㅎㅎ
ㅋㅋㅋ 네~ 오늘이 파이데이군요~
문과 4등급인데요.. 기본적인 고등수학의개념들좀 잡을려하는데, 다돌리기는벅차고 어떤부분은 빼도될까요??
고등수학(하) 위주로 하시면 될 것 같습니다~
아기들 ㅠㅠㅠㅠ너뮤귀엽네요
ㅋㅋㅋ 네~ 귀엽죠^^
ㅎㅎ쌤수업 현장에서잘듣고있습니다 강의력이 아주뛰어나신것같습니다
감사합니다^^ 올해 열심히 해서 좋은 결과 만들어 봅시다~
유익한 글 감사합니다!
저도 감사해요^^
제가 저걸 좌표평면이용해서 구했는데.. 그러면 안되나요? 물론 선생님이 푸신방법보다는 훨씬오래걸리긴 했는데..
시험장에서 도형문제 안풀리면 좌표평면 도입하는게 제일 확실하긴하죠..
시험장에서는 본인이 풀어서 맞추면 됩니다^^ 단, 시험이 끝나고 피드백은 확실히 해야죠~
좌표풀이가 정말 난감한 상황이 올때도 있고, 우선 시간적으로 많은 차이가 나니까요~
한변 길이구한걸로 첫째항이랑 공비는 어떻게구하는건가요?
닮음구조상 정사각형의 길이비가
곧 닮음비가 되기 때문입니다^^
올해 수비 강좌는 Part1,2도 강의 해주시나요?
아마 할 것 같습니다~
오 쉬운데요 ㅎㅎ
도움이 되셨으면 다행입니다^^
우와 한눈에 정리되는거 같아서 좋아요! 근데 1씩늘려서 4로 만들때 새롭게 생긴 선분이 p1q1이랑 딱 맞는지 어떻게알아요?ㅠ
연장선으로 직각 이등변을 먼저 만들고, 그 변의 길이가 4임을 특수각으로 알아낸거지요^^
신기하네요. 답답하게 풀었는데 머리가 확트이는 느낌입니다 감사합니다 :)
도움이 되셨다니 다행입니다^^
교육청해설에서.. ND2랑 ND1이랑 같다고하는 부분이 정말 이해가 안되요 ㅠㅠ 어떻게 같은걸 알수있죠?