문과인데요, 좌미분계수 우미분계수 일반적으로 사용해도 되나요?
게시글 주소: https://orbi.kr/0003671351
제가 이걸로 세번째 글을 올렸는데요. 죄송하지만 답변들 많이 달아주셔서 감사한데 오히려 더 혼란스러워졌어요...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수생인데 주변 친구들 반절은 독재가고 잘하는 애들은 다 시대 재종갔는데 저는 너무...
-
푸는데 ㅈㄴ 오래걸림 ㅋㅋ
-
제 보잘것 없는 수험생활의 정수를 담았습니다 아마도 근데 칼럼을 다 쓰고도 기다려야...
-
예전엔 이렇지 않았던것 같은데.....
-
https://m.site.naver.com/1CoSf
-
https://m.site.naver.com/1CoSf
-
https://m.site.naver.com/1Abu2
-
인생 최악의 악몽 꿧다 10
(내용 주의) (순수하고 마음이여리고 차칸 오르비언이면 읽지말것) 1. 폐쇄된...
-
자기야 6
잘자
-
오늘 할 일 1
여드름 흉터 연고 사기 주민센터가서 모바일 민증 받기 머리자르기
-
뭔가 정리가 안되는 느낌 자체교재라도 만들어볼까
-
힘내라 샤미코
-
기차지나간당 4
부지런행
-
https://m.site.naver.com/1CoSf
-
https://m.site.naver.com/1Abu2
-
작수2임..
-
1. 수학 실모 풀기 2. 프랙탈 만들기... (?)
-
다 자나 3
웬일로 알림창 마지막 알림이 2시간전이지
-
https://m.site.naver.com/1CoSf
-
https://m.site.naver.com/1Abu2
-
흑백 료 등장 3
-
원래 유튜브 계정은 너무 많은 관심사들이 섞여나와서 생산성 있는 채널들만 따로...
-
새벽에두시간동안칼럼을쓰고있는가
-
서연카성울?? 서연성카울??
-
센츄리온 질문 6
고2 학평도 센츄리온 신청 가능한가요? 만약 된다면 이 성적으로도 되는지…
-
ㄱㅊ을지도
-
ㅋㅋ 갇혓다 0
흐에
-
당황했네 ㄷㄷ
-
수바는 맛있다 0
방금 풀고왔는데, 확실히 실모는 실모다. 다른 N제와는 맛이 다르다. 실모내놔
-
그냥어떻게봐도존나부정적으로밖에안보여 근데그런인생이라납득은가 개좆같은일만일어나는데뭐죽으라는거지
-
그건 바로 '나' 살기 싫음 ㅇㅇ 진심
-
학원묵시록 0
재밋나요
-
이랴!!
-
걍 사탐할까 5
나도 사탐런으로 꿀빨고 여초과 가고 싶다ㅅㅂ
-
못참겠대 0
아:: ㄸㅂ
-
ㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㄱㅈㅉㅇㅇ?
-
반수 관련 질문 6
2025 수능 백분위 화작 확통 생윤 사문기준으로 99(1) 70(4) 2...
-
여기저기 잘쓰고잇음
-
계속 생각난다 너무 맛있는데
-
치킨 맛있다 9
다 먹었으니 나 놀아줄사람
-
왜 맛있어보이지 5
아
-
진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은 게시물 부탁드립니다 아니 얼굴빼고님...
-
를 찾습니다
-
걱정했는데 다행이군
-
50% 살아있거나,죽었거나 확통러라 계산이 되네 이게
-
가기로 한 팟에 납치됨 그때도 내가 살아있을까
-
미안하다 내 옷들아... 나처럼 어깨쳐지고 머리 큰 주인 만나서 너네가 못나보이는구나
-
으흐흐 일루와잇
다항함수는 도함수가 무조건 연속이거든요,
다항식으로 써있어도 구간마다 함수가다른건 다항함수라고 안해요.
다항함수의 정의를 다시 확인해보세요
각 구간 내에서 다항함수기 때문에, 그 도함수도 역시 각 구간 내에서는 다항함수입니다.
구간에 따라 다르게 정의된 다항함수가 전 구간에서 미분가능하려면,
이미 각 구간내에서는 연속이고 미분이 가능하기 때문에,
구간의 경계값에서만 연속과 미분가능성만 따져주면 됩니다.
그래서 구간 경계값에서 우선 함수값을 구해서 연속인지 확인하고,
함수가 전 구간에서 연속이 된다면, 미분가능성은 미분계수의 정의를 사용하지 않고,
도함수의 좌극한값, 우극한값을 조사하여 같으면 미분이 가능하다고 말할 수 있습니다.
그 이유가 함수는 연속이지만 도함수가 불연속이여서 도함수의 극한값과 함수값이 다른 사인뭐시기 함수같은 경우가 없기 때문이죠
구간에 따라 정의된 함수가 "다항함수"이기 때문에 도함수의 극한값으로 미분계수를 구할 수 있는 거구요.
그렇다고 하여 "도함수의 좌극한"과 "좌미분계수"가 동일한 개념은 아니라는 점에 유의하세요.
좌미분계수란 미분계수의 정의(f'(a)) 중 좌극한 값(lim h->0으로 갈 때라면 -0을, lim x->a로 갈 때라면 a-0)을 의미하구요,
도함수의 좌극한이란 f'(x)를 구해놓고 lim x->a-0을 취하는 개념인데,
그 두 값이 반드시 일치하지는 않습니다.
그리고 도함수의 좌극한과 우극한값이 존재하지 않더라도, 미분계수는 존재하는 경우도 있구요.
아...그렇군요. 감사합니다.
그런데 제가 나름 자료를 찾아봤는데 미분계수의 좌우값을 좌미분계수,우미분계수라고 하는 사람도 있고 도함수의 좌극한우극한을 이용하는걸 좌미분계수,우미분계수라고 하는 사람도 있네요. 이게 통일된 용어가 아닌가요?
어쨌든 이런 용어는 넘어가고 원함수가 미분가능하다고 해도 도함수의 연속성은 반례가 있기때문에 보장되는게 아니라는거죠? 다항함수라면 미분해도 연속이니 보장되지만 구간이 나눠진 함수는 다항함수라고 볼 수 없는거고...
참 이거 사용하기 까다롭네요.