올해 수능 보는 사람은 꼭 봐야 하는!! [22 예시 수학Ⅱ]
게시글 주소: https://orbi.kr/00035753452
2022학년도 예시문항 수학Ⅱ 문제지.PDF
2022학년도 예시문항 수학Ⅱ MENTOR의 손풀이.PDF
안녕하세요. MENTOR 승현입니다.
시작하기에 앞서 혹시 아직 예시문항 수학Ⅰ 문제들을 확인하지 못하신 분들은
2022학년도 대학수학능력시험 예시문항 수학Ⅰ에서 꼭 보고 오시면 좋을 것 같습니다!
오늘은 2022학년도 대학수학능력시험 예시문항 수학Ⅱ 문제들을 가져왔습니다!
첨부파일에는 2022학년도 예시문항 수학Ⅱ 전 문항과 손해설이 있으니 확인해주세요.
지금부터 제가 선택한 예시문항 수학Ⅱ 네 문항에 대한 간단한 피드백을 시작하겠습니다!
1) 2022학년도 예시문항 수학 9번
9번 문제는 삼차함수의 접선에 관한 문제였습니다.
접점의 x좌표를 미지수로 설정을 하고 접선의 방정식을 세워서
그 식에 원점의 좌표 (0, 0)을 대입하면 쉽게 답을 구할 수 있는 문제입니다.
하지만 저는 다른 풀이를 한번 보여드리겠습니다!
저는 이렇게 임의의 점 A를 지나는 접선 문제가 나왔을 때
항상 '점 A와 접점 사이의 기울기 = 접선의 기울기'라는 식을 세워서 풉니다.
물론 문제마다 차이는 있겠지만 개인적으로 저렇게 식을 세웠을 때 더 계산이 쉽게 된다고 생각합니다!
두 가지 풀이를 모두 알아두셨으면 좋겠습니다ㅎㅎ 첨부파일의 손해설을 참고해주세요!
2) 2022학년도 예시문항 수학 12번
12번 문제는 정적분에 관한 문제였습니다.
정적분의 값이 언제 양수가 되는지를 생각해보면 어렵지 않게 풀 수 있었던 문제라고 생각이 됩니다.
모든 양의 실수 a, b에 대하여 주어진 정적분의 값이 양수가 되려면
함수 f(x)= x 3 - 3 x + k라 할 때, 함수 f(x)는 x ≥ 0에서 x축보다 위쪽에 존재해야 합니다.
따라서 함수 f(x)가 x ≥ 0에서 x = 1일 때 최솟값을 갖기 때문에
f(1) = k - 2 ≥ 0이어야 합니다. 즉, 실수 k의 최솟값은 2입니다.
그래프를 직접 그려서 따져보시면 문제를 이해하는 데 효과적일 것 같습니다.
3) 2022학년도 예시문항 수학 14번
14번 문제는 위치, 속도, 가속도에 관한 문제였습니다.
속도와 가속도 사이의 관계를 잘 이해하고 있는지, 그래프를 해석할 수 있는지를 물어보는 문제입니다.
'ㄴ'은 어떠셨나요?
운동 방향이 바뀐다는 것이 속도가 '0'인 것과 같다고 잘못 알고 있는 학생들이 있을 것 같습니다.
(작년에 수업했던 학생들이 이렇게 틀리더라고요...) 다릅니다.
쉽게 이해하자면 앞으로 가다가 멈춘 후 다시 앞으로 간다고 해서 운동 방향이 바뀌었다고 하지는 않죠.
운동 방향은 속도의 부호가 바뀌는 순간 바뀌는 것입니다.
연속함수에서 양, 음이 바뀌려면 필연적으로 '0'을 거쳐야 하기에
이런 오해가 생기는 것 같은데 개념을 바로 잡으셨으면 좋겠습니다.
'ㄷ'에서의 포인트는 '위치의 변화량 = 속도의 적분값', '움직인 거리 = 속도의 절댓값의 적분값'입니다.
따라서 임의의 구간에서 점 P의 위치의 변화량과 점 P가 움직인 거리가 같아지려면
그 구간에서 점 P의 속도는 항상 '0'보다 크거나 같아야 합니다.
위치, 속도, 가속도에 관한 개념들을 잘 숙지했는지를 확인할 수 있는 좋은 문제였던 것 같습니다.
4) 2022학년도 예시문항 수학 22번
22번 문제는 어려운 문제였습니다.
삼차함수의 f(x)의 개형과 x축의 위치를 찾고
범위에 따른 함수 |f(x)|의 최댓값과 최솟값을 따지는 문제입니다.
첨부파일의 손해설에 굉장히 자세하게 적어놓았으니 참고하시면 좋을 것 같습니다.
.
.
.
.
이렇게 2022학년도 대학수학능력시험 예시문항 수학Ⅱ 문제들을 살펴보았습니다.
선택 과목 체제가 되면서 공통 과목의 중요성은 더욱 커졌고
수험생분들도 그에 따른 탄탄한 공부를 해나가시면 좋겠습니다.
수험생 여러분들의 더 효율적인 수학 공부를 위해 저희 MENTOR는 최선을 다하겠습니다!!
앞으로 진행될 '2022학년도 예시문항 확률과 통계, 미적분, 기하'에도 많은 관심 부탁드립니다.
★주예지T X MENTOR★
많은 응원과 관심 부탁드립니다♥
-지난 게시글 바로가기-
주멘 모의고사 공개 일정 바로가기
2021학년도 수능 수학Ⅰ바로가기
2021학년도 수능 수학Ⅱ 바로가기
2021학년도 수능 수학 확률과 통계 바로가기
2021학년도 수능 수학 미적분 바로가기
기하에 대하여 바로가기
2022학년도 예시문항 수학Ⅰ바로가기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아기 현역 달린다
-
기상 완료 오늘도 ㅍㅇㅌ
-
주작찾아왔다 ㅋㅋㅋㅋㅋㅋㅋ
-
ㅎㅇ 0
기상완료
-
얼버기 0
-
잠 다깸 0
어제너무 일찍잣나
-
무빙 답답해서 숏 사고 자고일어났는데 이게 되네
-
수면 패턴 0
11시에 자서 지금 깨는거 정상인가요?? 너무 일찍 깨는 거 같은데..
-
님 글 쓴 목록이랑 말투 보면 사회성떨어져서 먹금하고싶은데 글 내용이 너무 얼탱없네
-
안잔다 0
숏치길 잘 했다 진짜 킬마이셀프 해버릴뻔함 이번 숏끝나면 건실하게 살아야겠다 진짜
-
미적 84 2
공 22 미 28 29 30 틀렸는데 백분위 몇 정도 나오려나 1은 안 되겠죠? ㅠ
-
개억까다 진짜
-
이게 말이되냐
-
꿀과목 아닌것같음 ㅅㅂ 배운거에서 안나옴
-
이번수능기준 4등급, 듣기는 항상 다맞는데 18~20, 일치불일치, 43~45...
-
전문대갈건데 7
솔직히 나 예쁘고 돈도 많이 번다는데 하 …. 왜 이 학벌만… 수시 버리지말걸 ㅋ...
-
2일연속 밤새기 0
아침에 몇시간 쪽잠자긴 했는데 힘들다
-
세지친사람 있나 11
요번수능뭔가 이기상 저격같은데...
-
ㅈㄱㄴ 특히 국어
-
ㅈㄱㄴ
-
사람은왜코를골까
-
어문계열정도는 가고싶은데 가능할까요 정법 3 뜨면 아예 불가인가요..
-
숏치고 잔다 1
제발 공매도 성님들 한번만 도와주이소 나한테 뜯어간 돈가지고 공매도 치는거 아니오...
-
언매기하물2경제 18
언매기하물2경제 에반가요? 현역 화작기하물1물2했었고 화작4틀1등급놓침 -> 언매로...
-
지금 메가 대성 31 이투스 29
-
근데 만약 메가 혹은 대성 수학 컷이 맞았을 경우에는 1
왜 그렇게 나오나 생각을 잠깐 해봤는데 전년도와의 가장 큰 차이점은 의대 정원...
-
ㅋㅋㅋㅋ
-
알바 0
추천좀여
-
모두가 88을 외칠때 저는 조용히 84~85로 외치겠습니다. 사실 다른 분들이...
-
작수 가채점 끝난 저녁날, 받아든 가채점 결과는 언미영물지 13323. 목표에 한참...
-
인간 미쳐버리기 만드네 그냥..
-
뭔가 수위좀 있는거 같아서 군대에서 보기 좀 그럴듯
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 5
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
ㅋ
아니 왜욧!ㅡㅡ
아 아니네ㅠㅠ
손풀이 글씨ㅋㅋㅋ 귀여우세여 좋은 자료 감삼당