학습이란 무엇인가 7편
게시글 주소: https://orbi.kr/00030479765
제가 고등학생 때 본 TV 프로그램 <공부의 왕도>에서는 여러 고수들이 나와서 자신들만의 공부 비법을 소개해줍니다. 거기서 제가 제일 개인적으로 인상깊었던 방법이 ‘말하기 공부’입니다.
‘말하기 공부’는 말 그대로 설명해주는 공부입니다. 거기 나온 여학생은 공부가 끝나면 어머니를 데려다가 앞에 앉혀두고 그날 공부한 내용을 설명했습니다. 이 방법은 혼자 공부해야하는 대부분의 수험생들에게 힘들지만 매우 효과적인 학습방법이라고 생각합니다.
위의 사례와 관련되서 계속해서 화자되는 것이 ‘메타 인지’입니다. 당장 유튜브에만 검색해도 수없이 많은 영상이 검색되고, 아마 최근에 밝혀진 학습에 대한 이론 중에서 제일 핫하지 않을까 생각합니다.
물론 제가 앞선 시리즈들에서 설명해드린 학습의 근본에 대해서 조금만 생각해 본다면 이러한 공부방법과 이론들이 매우 당연하다고 느껴지실 것입니다.
(출처 : EBS 다큐멘터리 <학교란 무엇인가>)
저는 계속해서 학습은 곧 알고리즘이고, 효율적인 좋은 알고리즘을 세우는 것이 제대로 된 학습임을 설명했습니다. 남에게 설명을 해주는 ‘말하기 공부’라던지, ‘메타인지’는 이러한 학습의 근본을 기반하고 있음을 알 수 있습니다. 알고리즘이 제대로 세워졌는지 확인하는 가장 쉬운 방법이 무엇일까요? 그냥 한번 돌려보는 것입니다.
알고리즘이 문제를 해결하는 과정에서 큰 고민이나 난점 없이 수월하게 넘어갈 수 있다면 그 알고리즘은 문제가 없는 알고리즘입니다.(다만 효율성은 다를 수 있겠지요) 시험삼아 알고리즘을 작동시켜보았는데 중간에 막히는 경우가 생길 수 있습니다. 그것은 곧 그 알고리즘이 완벽하지 못하다는 의미입니다.
제가 이렇게 남들에게 설명하는 칼럼을 쓸 수 있는 것 또한 제 머릿속에 알고리즘이 정확하게 입력되어 있기 때문입니다. 만약 알고리즘에 어떤 부족한 점이나 하자가 있다면 작동하는 과정에서 반드시 오류가 발생할 것입니다.
‘말하기 공부’나 ‘메타인지’ 또한 결국은 내 머릿속의 알고리즘을 확인하는 과정이라고 볼 수 있습니다. 현대에서 학습을 설명하는 다양한 이론이 있지만, 결국 그 많은 이론들은 학습의 근본적인 요건을 깔고서 개성적으로 표현할 뿐이라고 봅니다. 학습은 곧 알고리즘이다. 라는 근본을 깔고 있다면 어떤식으로든지 설명할 수 있습니다.
내가 이해한 것과 이해한 거라고 착각하는 것은 전혀 다릅니다. 내가 만약 정확히 제대로 이해했다면 그와 관한 문제가 당장 주어져도 막힘없이 풀 수 있어야 합니다. 단순히 이해했다고 스스로 합리화하고 넘어가게 되면 반드시 뒤탈이 생기게 되어있습니다. 대표적으로 모의고사를 풀 때 이러한 뒤탈을 경험하게 됩니다. 이러한 유형과 개념을 완벽히 익혔다고 생각했지만 모의고사를 통해 알고리즘을 점검하게 되면 문제점이 드러납니다. 한국의 수험생들이 자신이 공부한 내용을 남에게 설명할 일은 별로 없으니 결국은 모의고사를 통해 스스로 확인해야 합니다.
모의고사를 통해 특정 유형의 알고리즘이 제대로 잡히지 않았다고 느끼면, 그 유형의 문제를 따로 모아서 한꺼번에 푸는 연습을 하는 것을 추천합니다. 과탐 모의고사를 예로 들자면 20문제의 서로 다른 파트와 유형을 담고 있습니다. 단순히 과탐 모의고사를 여러번 치는 것 또한 비효율적입니다. 한번 모의고사를 친 후에 복기하면서 자신의 부족한 유형(알고리즘)을 찾아내고, 그 다음 같은 유형의 문제를 모아서 따로 연습해 보아야 합니다.
유형별 학습은 필자가 추천하는 대표적인 공부 방법입니다. 같은 유형을 모아두고 빠른 시간안에 비슷한 논리로 정확하게 풀 수 있다면 그 유형을 마스터했다고 볼 수 있습니다.
물론 모의고사뿐만 아니라 당장 옆에 같이 공부하는 친구에게 수다를 떠는 대신 공부하고 이해한 내용을 말하는 것 또한 매우 좋은 방법입니다. 저는 이 칼럼 시리즈를 쓰기 전에 제가 만나는 친구들에게 몇 번이나 비슷한 내용을 말로 표현했었습니다. 이렇게 글을 써서 여러분에게 공유하는 행동 또한 제 스스로의 알고리즘을 점검하는 과정입니다.
알고리즘을 세우는 것 또한 중요하지만 그에 못지않게 알고리즘을 점검하는 것 또한 중요하다는 것이 이번 글의 핵심이었습니다.
학습이란 무엇인가(11편 예정)
https://orbi.kr/00019535671 - 1편
https://orbi.kr/00019535752 - 2편
https://orbi.kr/00019535790 - 3편
https://orbi.kr/00019535821 - 4편
https://orbi.kr/00019535848 - 5편
https://orbi.kr/00022556800 - 번외편 인치와 법치
https://orbi.kr/00024314406 - 6편
https://orbi.kr/00027690051 - 번외편 문과와 이과
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진 무물보 1
만날 술먹고 들어오는 한량이지만...
-
미적분 책을 펴고
-
수능 끝나면 며칠 내에 바로 내년 커리 준비하고 조정식t는 수능 끝난 당일에 26...
-
문과 허수 0
고대식 내신은 잘 모르겠으나 대략 1.8~1.9정도 언확 정법 사문 85 92 47...
-
저도 무물보 6
오늘 목표는 질문 2개
-
올해 40권 약간 넘긴거같은데 20권이 수능끝나고 지금까지읽은책임..
-
한남 23
한다면 하는 남자 근데 이거 올해 패스 끝나기 전에 완강 못 때리겠지
-
ㅈ걑은 논술 차피 조질 것 같은데 그냉 심적으로 너무 짜증만 남 절친들 오늘 나...
-
오직 독학이었구나 나.
-
본인 스펙 16
풀업 정자세 10개 가능 중학생한테 스카에서 시비 걸려봄(한 달 전) 20살 때...
-
외모9등급탈출기
-
브론즈보다 쓰레기 수준
-
이과 사탐런 조사
-
지상철 역 건축
-
물2 강사 10
배기범 방인혁 아무나 들어도 상관없나요.
-
간만에 존나웃었네 ㅋㅋㅋ
-
무물보 9
고고
-
사실 그거랑 상관없이 사려고는 하는데요..
-
연고티비... 3
진짜 폼 다죽었구나 최근 영상보면 그냥 엄...
-
얼른 사탐 공부하고싶다
-
중대발표 6
슬슬 고죠 사토루를 떠나보내야 할까요...
-
틀딱기준 11
초등학교에서방정식을배웠는가? ㄹㅇ
-
질받 8
술 처먹고 집 들어가는 중인 아저씨
-
난 아직도 내 친구보고 깜짝 놀람
-
작년에 탈릅이후로 공스타로 연락 주고받았는데 공스타 탈퇴하신듯ㅠㅠ 이거 보신다면 연락 주세용ㅠㅠ
-
시대인재 수학 미적분 현강을 들으려고하는데 강기원,김성호,송준혁,엄소연쌤의 각각...
-
ㅈㄱㄴ
-
오르비 임티 3
넘 유용해서 가끔 카톡할때 생각남
-
무엇이든물어보세요 23
그거 아시나요 원주율은 3.05보다 크대요 증명은 고등학교 수준에서 충분히 할 수 있으니 생략할게요
-
미치겠네 17
투표가 이렇게 나오니 터지는 건 나의 머리뿐…
-
일단 내년부터는 탈릅 or 계정만 남길 가능성 높아용(그때 심심하면 들어올게)
-
수학 19번 41이 답인데 1하거 4하고 겹쳐지게 적었는데(14에 좀 가깝긴 함)...
-
제발
-
잘하던 자존심이던 과목 15
에서 아쉬운결과가 나오면 더 슬프다...
-
ㅈㄱㄴ
-
고백할 거 0
오늘 깨어있는 15시간동안 논술공부 하나도 안하고 작곡공부도 10분 함 한양대는 글렀다
-
거꾸로 보면 불합 가능성은 각각 46% 55% 92%입니다 너무 도박이 아니냐 라고...
-
무물보 17
안해주면슬퍼요
-
컨버전스 홀
-
이번수능 미적했는데 도저히 못하겠어서 확통이나 기하하려는데 0
논술땜에 전체적으로 둘다해봤는데 확실히 기하가 재밌긴함..미적이랑 확통은 진짜...
-
참 어렵고 어려운 일 대화가 잘통하는데는 여러 조건들이 충족해야하니...
-
변표 4
아직 안나온건가요?
-
선택과목 4
생2지2로 설의가능?
-
하..
-
재수할 때 외롭나요 13
독재 예정인데, 보통 재수 할 때 외로움이나 고독감? 심한가요? 물론 사람마다 다르겠지만...
-
80프로부터 쭉쭉 떨어지는 중인데 실채 뜨면 못 갈 수도 있나요?
-
키빼몸 70 iq 104 닮은꼴 호날두 강민철 곰같다는 말 많이 들어봤어 ㅎㅎ
첫번째 댓글의 주인공이 되어보세요.