[이동훈 기출] 6월 모평 수학 가형, 나형 해설지 (상세한 해설)
게시글 주소: https://orbi.kr/00017565288
2019(6월)_수학가형_해설지_이동훈기출.pdf
2019(6월)_수학나형_해설지_이동훈기출.pdf
2019 이동훈 기출 교육청/사관/경찰 이 출시되었습니다. (가형, 나형)
2019 이동훈 기출 atom 책페이지
안녕하세요~
이동훈 기출문제집의 저자 이동훈입니다. :)
2019 학년도 6 월 모평 수학 가형, 나형 해설지 입니다.
이 글에 첨부된 PDF 파일을 다운로드 받으세요.
감사합니다 !
이동훈
+ 6월 26일 오후 1시부터 적용
나형 29번의 [풀이1]을 [풀이2]로 보내고, 기존의 [풀이2]를 교체하였습니다.
기존의 [풀이2]를 새로운 풀이로 교체한 이유는 답은 구할 수 있지만,
필요충분조건에 딱 들어맞는 풀이가 아니기 때문입니다.
+
6월 모평 해설지 작업을 마감하고 든 생각은
(1) 결국 수능/평가원 신문항은 기출의 재구성이며,
(2) 생소한 문제일 수록 교과서의 기본개념을 적용하면 된다.
라는 원칙이 여전히 지켜지고 있다라는 점입니다.
가형 21번 : 루트(|f(x)-t|)의 미분가능성에 대한 판단
나형 29번 : 함수와 역함수의 교점이 y=-x+k 위에 있는 경우
정도가 시험장에서 생소하게 느껴졌을 텐데요.
가형 21번의 경우에는 미분가능성을 판단하라고 하였으니,
교과서의 미분계수의 정의를 떠올리면 풀 수 있고,
나형 29번의 경우에는 교과서 본문의 그림에서
유리함수 y=1/x와 그 역함수의 그래프가
기울기가 -1인 직선 위에서 만남을 관찰한 경험을 떠올리면
풀 수 있었습니다.
가형 28번, 30번, 나형 21번, 28번은 수능/평가원 기출에서
(숫자만 다르고) 동일한 풀이과정을 가진 문제를 찾을 수 있고,
나형 30번은 조건 (가)에서 합(수열의합) -> 차(일반항)
을 떠올릴 수 있었다면, 그 이후의 풀이는 인수정리를
이용하여 다항함수의 방정식을 유도하면 되었습니다.
전반적으로 고전적인 스타일을 유지한 시험이라는 생각입니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
학교 안 가야지 0
좀 뒹굴어야겠어
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
어떤 전형들이 떠오르면 개추 좀 ㅋㅋㅋㅋ
-
얼버기 1
-
난 이런걸 원했다고
-
이거뭐냐진짜 미치겠다
-
2019 수능 수학나형 21번을 뉴런에 나와서 풀어봤는데용.. 다른 쌤들은 걍...
-
브래드 피트 너무 답답하다
-
걍 하루 새고 공부나 할까 수면패턴 더 앞당길겸
-
얼버기하는사람
-
첨 볼 땐 셤장에서 어케 푸나 싶엇는데
-
해가 떳구나 1
일찍 뜨네
-
기상 2
-
세컨볼 처리가 끄응...
-
기상 0
공부해요 216일
-
영어는 4
내년부터
-
닉값하는중 1
에휴
-
D-6 6
전력으로 간다
-
샤인피 못구하나 0
썩은물 문제들 ㄹㅈㄷ였는데
-
얼버기 21
-
영어 이영수t 듣고 1 나오신분들 좋았던 점들 알려주세요 0
어떤 특징이 있고 강점이 있는지??! 영어가 너무 부족한것 같아 공부를 하려는데...
-
아 2
노잼..
-
아 2
왜살지
-
2시간정도 6
더 공부하다잘듯 다행히 내일은 오후수업
-
시간이 지나고 민철쌤 이감 모고 해설 강의가 8월쯤부터? 올라오면 그 때 다른 일반...
-
구한 답에서 p가 자연수로 안나오는뎀;;
-
다 자ㅏ네 9
에휴이
-
어싸 푼뒤 0
어싸풀었으면 시즌1 n제들은 안풀어도 되나요?
-
(예상문제) 26학년도 6월 모의고사 물리학1 20번-역학적 에너지 보존 법칙 0
위의 그림과 같이 질량이 m인 물체 A와 질량이 2m인 물체 B는 빗면 M위에,...
-
얼굴은 ㅎㅌㅊ만 아니면 됨 결국은 키임
-
슬슬 피곤하다 4
-
그냥 울음바다를 만들어버려
-
큐브 700원에 킬러 물어봐놓고 예쁘게 정리 이러네 0
넌 나가라 ㅋㅋ
-
고딩때가 그립다 3
ㄹㅇ
-
짜잔~ 1
욜라기엽지 가방댈거임 해
-
수능 내신 0
내신 기간인데 수능 준비 해야됨? 탐구는 사문 정법임 영어를 젤 못하는데 내신기간에도 해야할까?
-
미소를 띠고 내게 말해 별 보러 갈래?
-
라면먹고 할 일 0
오랜만에 올라프 한판 해볼까
-
집에 생마늘이 없는게 말이됨?
-
미적은 평갓반수준인대 중간범위 여러가지 미분법까지면 한달 공부해소 2가능한가 ㅋㅋ
-
대학와서는 log라 칼까
-
부탁해 네이버엔 너무 구라핑이 많아
-
정시 '다'군 + 계약학과 ㄷㄷ 입결 개폭발할것같은데
-
펜슬 너무잡아서 0
손이 너무아프다
-
라면먹을거임 1
생으로 먹을지 고민중임
-
어서 자세요
-
무물보 2
좀 야함
-
드가자
언제나 감사합니다 저자님