정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
게시글 주소: https://orbi.kr/00012254198
저는 수학자가 아닌 그저 동네 수학 과외선생일 뿐입니다.
또한, 어쩌면 세상을 바꾸고 싶어하는 그냥 20대 청년일 수 있습니다.
어찌되었건, 저는 항상 노력합니다. 이 무언가가 누군가에게 힘이될 수 있기를..
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
저번 칼럼은 이거였습니다!
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정답갑니다.
이제, 우리는 P(0
평균에서 표준편차만큼 두칸 떨어진 곳과 평균 사이의 넓이!
그렇게 생각하는데에 가장 좋은 정규분포는 평균이 0, 표준편차가 1일때라구요.
이렇게 이해해주시고 풀어주시면 나중에 표준화를 헷갈릴 이유가 없습니다!
그렇다면 다음칼럼 가겠습니다.
이계도함수의 정의부터 살펴봅시다!
추가적으로 이 문제를 한번 더 생각해봅시다!
도함수의 도함수를 생각해보세요! 도함수는 무엇이었나요? x에 따라서 원함수 f(x)의 미분계수를 함숫값으로 대응한 함수였습니다.
도함수의 도함수도 x를 대입했을 때 f'(x)의 미분계수를 함숫값으로 대응한 함수겠지요.
미분계수는 무엇이었나요? 접선의 기울기였습니다!!
이쯤되면 명백하게 생각할 수 있겠죠!
정답은 다음 칼럼에 갖고오도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
검고 봐보신 분 ㅠㅠ 전날에 밤새고 가는 거 오바임? 0
참고로 평가원은 3등급 정도 나와여 검고 기출 풀어보니까 각 과목 5분안에 풀고도...
-
생윤 현자의 돌 0
김종익 쌤 개념강의를 듣고 현자의 돌 가시감 문제집을 풀려고 하는데 괜찮을까요?...
-
구마유시 화이팅 0
지면 다시 LCK 안 볼게
-
설수리 절반...
-
그거 할 시간에 먹을거 게임 오르비에 투자 중
-
아 간지러워
-
수능때 언매 2나왔는디 강사들이 언매가 화작보다 표점도 높고 문풀 시간도 단축된드고...
-
쎅쓰중 2
이게야스지
-
융전 입결 1
25학년도 한양대 융전 입결 아시는분 있나요? 아시면 댓글좀 ㅠㅠ
-
대충똥머리하고 노상깔 동성칭구 필요
-
군붕이는 슬프다 원래도 정치얘기 안 하지만 더더욱 조심해야할 위치에 있기에
-
첨 앎
-
이게 맞나
-
주르비 3
음주비
-
그런가요? 하면 무슨 과목이 좀 컨텐츠 풀려있나요 인강이나 뭐나
-
쉬는시간에도 인강 못 보고, 야자시간만 가능
-
배성민의 시간이 왔다 경배하고 찬양해라 이판사판공사판막근사로 삼도극 30초컷ㄱㄱ
-
그 시크한 분위기가 너무 좋아
-
내가 과탐을 좀만 더 잘했더라면
-
노래 추처어어어언 13
ㅈㄱㄴ
-
전자 선택권 주면안됨?
-
온 몸에 불닭소스를 바르게 하고 뜨거운물에 담글거임 진짜겁나아픔
-
잼얘 없냐? 2
간다. (진짜 감)
-
친구 3명 INTP (I랑 T는 99점임) 말 거의 안함 발표 진짜 못함 웃음 소리...
-
과탐 등급컷 상승되나요?
-
집 감 9
-
ㅋㅋㅋㅋㅋ 2
2주석 입갤
-
현우진 너무 어려울 것 같아서 김기현 커리 쭉 타려고 지금 킥오프 끝내는 중이거든요...
-
이거 요즘 시급얼마임 만점목표임
-
사실 오르비에서도 딱히 특출난 자아는 없고 현생 자아 그대로 투영하면서 활동하다보니...
-
산수계산실수 1
를 개많이해요ㅠㅠㅠㅠㅠ 3모 때도 23/2가 12.5라고 하고… 지금 수특 푸는데...
-
사문 생윤 노베이고 1등급 목표인데 6모까지 계획으로 사문:림잇+백엔드+마더텅...
-
병신들 어쩌고 하면서 욕하던데
-
수능 출제 방식 23수능 이전으로 회귀 정시 확대 수시 축소
-
한국은 끝났다 0
https://youtu.be/Ufmu1WD2TSk?si=rmlqunRR5FkfDBdD
-
즐거운프로세카 5
이런 시 바
-
03이라 오랜만에 수능보는건데 한의대 목표고 최소 연고공 목표입니다. 그 이하면...
-
외모 또는 성격
-
목표는 건동홍 공대, 중경외시 문과이구요 군수중입니다 수능은 앞으로 두번더...
-
나 성인군자 됨 4
이제 질문방에서 언냐가 긁어도 주의만 주고 넘김ㅋㅋ 얼마나 익숙해진거지
-
나 한의대는 안될듯 10
솔직히 요즘 반수욕구 식어서 그냥 이것저것 찾아보고 있는데 한의대...
-
아 또 이 새끼 에어팟 꼈네 이럼.. 에어팟 마이크 음질이 진짜 안 좋긴 한 것 같아요
-
공태기왔는데 0
조언좀해주세요 ㅠ 진짜 공부하는게 온몸으로 거부감이 들어요
-
어찌 조언해줘야하지 내년이 끝인디.. 내후년에 내신때매 해도 안될수도있다라는걸 어떻게 말하지
-
07이고 이번 3모 14 22 29틀로 88점 나왔습니다 3모 80~84점 이하는...
-
영단어장 ㅊㅊ좀 1
-
우리학교는 이번에 중앙의 붙음
-
작수 기준 3초~2컷 정도인데 정시 전문 대치동 수학학원 찾고 있습니다. 괜찮은 곳...
-
대세는백합갤러리
음냐 19번 답이 4번이었던것 같은 기억이...칼럼 잘봤어용 ㅎ 교과서는 미근ㅏㅣ엔인가보네요!!
네 맞습니다! 교과서는 M 수학교과서 확률과 통계, 미적분2를 캡쳐했습니다.
이 내용은 비영리적 목적으로 쓰여졌습니다.
두유 두유!
두유그만해
아 맞다 또한, 정규분포 곡선을 좀더 설명하자면
그 밑넓이가 1이고, 좌우 대칭인 종모양의 곡선을 정규분포라 합니다.
가우스 적분에 의해 넓이가 1임을 밝힐 수 있다고 합니다.
응아
설마 그 책내용일...
약간?
0ㅇ0 확통 식이 상당히 복잡해보이네여.. 이번 칼럼도 잘 읽었어요 감사합니다!
과연 읽었는가..
읽었어요 ㅠㅅㅠ 근데 19번은 잘 모르겠다는게 함정!
일단 변곡접선 얘기를 좀 하고싶었어요.
그리고 확통식이 너무 어려우면 제껴도됨
중요한건 확통식이아니고 결론이져
직접 만든? 저 이거 무료배포 의향있으신가요 보고싶어요
확통부분은 책으로 냅니다.