[이동훈t] 6모 28번 분석 (+해설3개)
게시글 주소: https://orbi.kr/00073446651
6모_미적28_2026.pdf
2026 이동훈 기출
본문 일부가 추가+교정 되었습니다.
아래는 이에 대한 자세한 설명
[이동훈t] 260628 - 이계도함수가 주어지면 반드시 두 번 미분? (추가 설명)
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
6 모 수학 미적분 28 번을
물고, 뜯고, 맛보는
시간을 가져보겠습니다.
우선 이 글에 첨부된
28 번 해설 PDF
를 다운로드 받아서
함 읽어보시구요.
※ 아래의 컬럼은 풀이의 일부를 포함하고 있으므로
문제를 풀어서 맞힌 분들만 읽으시길 바랍니다. :)
해설지 PDF 에는
총 3개의 풀이와 3개의 참고가
수록되어 있습니다.
[풀이1] 산술적 풀이
(가)에서 주어진 항등식을 두 번 미분하여
2 개의 항등식을 더 찾고,
이 3 개의 항등식에 미정계수법을 적용한다.
[풀이2] 도함수의 연속성을 이용한 풀이
(가)에서 주어진 항등식을 한 번만 미분한 후,
함수 f ' (x) 의 연속성을 이용하여 푼다.
[풀이3] 함수의 그래프 + 평균값 정리(귀류법)
(가)에서 주어진 항등식을 한번만 미분한다.
곡선 y=(2x+1)/(x^2+x+5/2) 와
직선 y=a 의 위치 관계,
곡선 y=ln(x^2+x+5/2)와
직선 y=ax+b 의 위치 관계를
함께(동시에) 따진다.
이 과정에서
평균값 정리와 귀류법을 이용하여
곡선 y=ln(x^2+x+5/2) 의
왼쪽 변곡점에서의 접선이
직선 y=ax+b 임을 보인다.
[풀이1] 이
모범 답안으로 보이며,
[풀이2], [풀이3] 은
가능한 풀이(열어둔 풀이)가 아닌가 ... 합니다.
즉, ...
개인적으로는
[풀이1]이 [풀이2], [풀이3]에
우선한다고 생각하지만 ...
이와 다른 생각을 가진 분들도 있을 터인데 ...
각자 좋아하는 풀이를
좋아하는 것으로 합시다.
이 외의 다른 풀이도 있을 것 같은데 ...
아마도 위의 세 개의 풀이의 변주일 가능성이 높습니다.
물론 완전히 새로운 각도의 풀이도 있을 수 있겠죠.
그건 각자 찾아보도록 하고요 ...
문제 한 번 다시 읽어보시면 ...
이 문제를 읽고 나서 ...
240628(미적분) 이 떠오르지 않았다면
기출 연습이 덜 된 것이겠죠.
위의 붉은 칸의 좌변의
5차, 3차를 각각
5차 : 5차 이상의 방정식은 일반해를 구할 수 없다.
(4차까지는 가능)
3차 : 양변을 두 번 미분해도 여전히 좌변을 f(x) 로 묶을 수 있다.
이게 바로 보인 수험생 있으실지 ...
이 두 차수에 대한 관찰은
어떻게 이 문제를 풀 것인지에 대한
직접적인 단서가 되기 때문에
매우 중요합니다.
자세한 설명은 조금 뒤에 할 것이구요.
240628(미적분)과의 공통점, 차이점을 알아보면 ...
공통점)
위의 두 문제의 붉은 칸에 들어간 항등식은
g(f(x)) = h(x)
로 주어진 음함수 구조라는 점에서 같습니다.
차이점)
260628 - f(x), g(x), h(x) 가 모두 단조 증가
240628 - f(x), g(x), h(x) 가 모두 극값을 갖는다.
260628 - f(x) 의 방정식을 유도할 수 없다.
240628 - f(x) 의 방정식을 유도할 수 있다.
음함수의 미분법에 대한 문제는
해가 되는 함수
(즉, 위의 두 문제의 경우 함수 f(x))
의 방정식을 직접적으로
유도할 수 없어야 합니다.
이런 면에서 260628 가 240628 보다는
완성도가 좀 더 높아졌다고 볼 수 있구요.
다만 미적분 교과서에서는
음함수를 원을 도입하여 설명하고 있으므로
240628 은
교과서 본문에서 출제 근거를 찾을 수 있긴 합니다.
260628 에서
세 함수 f, g, h 를 모두 단조 증가로 준 것은.
240628 과 달리 260628 의 경우
함수 f(x) 의 방정식을
직접적으로 유도할 수 없기 때문입니다.
함수의 방정식을
직접적으로 유도하기 힘들 때 ...
세 개의 함수 f, g, h 를
모두 단조 증가 또는 단조 감소로 주면
함수 f(x) 의 존재성을
쉽게 확보할 수 있습니다. (아래 그림)
이는 문제 만드는 사람들의 ...
테크닉 중의 하나이죠.
그렇게 하지 않으면 ...
특정 x 의 값에 대한 f '' (x) 의 존재성을
판단하기 힘들거나,
판단해야 하는 점의 개수가 많아 지니까요.
까닥 잘못하면
문항 오류 발생 가능성도 있고.
게다가 이 문제는
f ' (x)
가 미분가능해야 하므로 ...
세 개의 함수
f, g, h
가 매우 단순해야 합니다.
출제자의 관점에서
문제 풀이를 접근하는 수험생도
일부 있을 것이고 ...
5차 이상의 방정식은 일반 해가 없으므로
f(x) 의 방정식을 유도할 수 없고 ...
그렇다면
f(x) 의 존재성을 확보하기 위하여
f(x) 는 단조 증가 또는 단조 감소일 확률이 높을 것이다.
이때,
g(f(x)), 즉 h(x) 는
단조 증가 또는 단조 감소이다.
따라서 직선 y=ax+b 는
곡선 y=ln(x^2+x+5/2) 의
변곡점에서의 접선일 가능성이 높다.
이 정도의 눈치는 ...
만점을 노리는 수험생이라면
필요하다고 봅니다.
그리고 초월함수의 근사
의 관점에서
아래와 같은 빠른 풀이도 가능합니다.
개인적으로 실전적인 풀이라고
생각하고요.
다만 (x-alpha)^3 과 같이
3 중근을 갖는지에 대해서는
산술적인 증명이 필요하겠지요.
(그게 [풀이1] 이긴 합니다.)
산술적인 증명을 하지 않더라도 ...
3 중근이 아닐 가능성은
(문제 만드는 사람의 관점에서)
거의 없기 때문에 ...
위의 관점으로 접근해서
답이 나왔다면
오답일 가능성은 1 % 도 되지 않을 것입니다.
개인적으로는
" 내가 출제자라면 이 문제를 어떻게 만들었을까? "
라는 관점에서 우선 접근하기 때문에 ...
출제자가 종이 위에
그림 그림,
쓴 수식,
...
등이 보이면
보폭이 다른 풀이가
가능합니다.
이 글에 첨부된 해설지 PDF 에는
처음부터 끝까지 논리적인 설명만 해두었으니
오해는 없길 바랍니다.
.
.
.
이제 [풀이1], [풀이2], [풀이3]을
차례대로 알아보겠습니다.
.
.
.
[풀이1] 산술적 풀이
(가)에서 주어진 항등식을
두 번 미분할 생각을 어떻게 하는가 ?
일단 아래의 기출을 보면 ...
위의 문제에서는
이계도함수가 연속이라는 조건까지 추가 되었지만.
사실 ' 이계도함수를 갖는다. ' 라는 조건에서
위의 기출이 바로 떠올랐어야 합니다.
왜냐하면 두 문제 모두
미분하여 만들어진 항등식(방정식)에서
미정계수 결정을 목표로 하고 있기 때문입니다.
이계도함수를 갖는다.
라는 조건이 주어지면
아래의 표를 생각할 수 있어야 하고 ...
(위의 표는 H200 번의 해설의 일부)
어떤 문제의 경우에는
(두 번 미분하지 않고)
위의 표의 일부 성질만을 간단하게 사용하지만.
260628, 170930 처럼
풀이 과정 상 필요하다면
이계도함수가 나오는 식까지 미분해야 합니다.
260628 는 두 번 미분하는 것이 가장 빠른 풀이이고,
170930 번은 두 번 미분해야만 풀립니다.
260628 번의 경우
아래의 이유로 두 번 미분하는 것이
자연스럽습니다.
(1) 조건 (가)에서 주어진 항등식을 두 번 미분하면
두 상수 a, b 를 모두 없앤 항등식을 유도할 수 있다.
(2) 조건 (가)에서 주어진 항등식을 두 번 미분해도
함수 f(x) 는 여전히 살아 남아서,
3 개의 항등식이 방정식 f(x) = 0 을 모두 포함한다.
(1)+(2):
(마지막 항등식에서)
방정식 f(x) = 0 에서 x 의 값을 구할 수 있고,
a, b 의 순서대로 값을 결정할 수 있다.
이런 논리 구조를 따른다면.
이 문제는 그래프의 개형을 이용해서
(기하적으로) 풀어야 할 것 처럼 보이지만.
사실 처음부터 끝까지
산술적으로 풀면 됩니다.
아래는 PDF 해설의 [참고1]
붉은 칸에서 푸른 칸을 유도해야 하고.
푸른 칸을 보시면 아시겠지만 ...
고1 과정의 (해)집합의 포함관계, 연산에 대한
교과서 연습문제를 닮아 있습니다.
이 문제의 경우 ...
푸른 상자에서 어려운 판단을 요구하고 있지 않지만 ...
조만간 이 주제에서
상당히 까다로운 판단을 요구하는 문제가
출제될 것이라고 강하게 예상합니다.
제 칼럼 계속 읽으신 분들은 아시겠지만.
이 지점을
나는 작년부터 계속 강조하고 있죠 ...
그리고 ...
ㄱ 에서 ㄴ, ㄷ을 유도하는 과정은
다음의 증명 과정이기도 합니다.
두 곡선
y=ln(x^2+x+5/2)-(ax+b),
y=ln(x^2+x+5/2)
의 변곡점의 x 좌표는 일치한다.
이 문제의 풀이에서는
위의 성질이 직접적으로 사용되지는 않지만
위의 명제의 증명 과정이
풀이 과정과 겹치는 것은
그 만큼 중요하기 때문입니다.
수능 문제의 경우 ...
이처럼 두 가지 이상의 전형적인 풀이를
겹치게 해서 레이어를 쌓는 경우가 많은데.
평가의 관점에서도 의미가 있고 ...
예술성을 확보한다는 측면에서도 의미가 있습니다.
아래는 서로 수평화 관계에 있는
두 곡선의 변곡점의 x 좌표가 일치하는
주제를 다룬 (아마도 최초의) 대표 문제.
위의 문제는 워낙 중요해서 ...
풀이 과정과 결과를 함께
암기해두는 것이 필요합니다.
.
.
.
[풀이2] 도함수의 연속성을 이용한 풀이.
(가)에서 주어진 항등식을 한 번만 미분한 후,
함수 f ' (x) 의 연속성을 이용하여 푼다.
아래는 PDF 풀이의 일부.
이 정도의 풀이가 가능할 텐데요 ...
한 번 더 미분하면
f(x) = 0 의 해를 바로 구할 수 있는데 ...
꼭 이렇게 할 필요가 있을까 ?
이런 생각이 드는 것이 사실입니다.
물론 어떤 풀이를 택할 지는
개 취 존 중
.
.
.
[풀이3] 함수의 그래프 + 평균값 정리(귀류법)
난 그림으로 푸는게 좋다.
라는 분들의 풀이가 되겠습니다.
아래는 풀이 PDF 의 일부.
평균값 정리와 귀류법을
이용한 우아한 풀이입니다.
역시
개 취 존 중
.
.
.
6 모 관련해서는
두 개의 글을 더 준비 중입니다.
일정은 아래에서.
[이동훈t] (일정 안내) 6모: 문항 분석(+해설지), 실제 수험생 사례 분석
다음에 또 만나요 ~!
노베 기출 수학1+수학2+미적분 (PDF)
https://docs.orbi.kr/docs/12978
노베 기출 수학1+수학2+확률과 통계 (PDF)
https://docs.orbi.kr/docs/12979
2026 이동훈 기출 기하 PDF
https://docs.orbi.kr/docs/13000/
고1 기출 평가원+교사경 (무료PDF)
학습법, 수학 칼럼 링크 모음 ('23~'24)
2026 이동훈 기출 e-book
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅅㅂ
-
시대인재라이브처럼 현강 찍어서 올려주는건가요??
-
대시립ㅋㅋㅋㅋ
-
남들 땅 한복판에 갑자기 알박기 팔아먹은 미친새끼 그것도 모자라서 딴놈한테...
-
고려장할 나이죠
-
강의하는 방식/독해하는 방식/분석하는 방식 이런게 직독직해(김동욱 st)에...
-
국어잘하고싶다 1
ㄹㅇ
-
원래 건설적 토론하다 갑자기 상대를 비난한 느낌? 후회되는구만
-
엡스키마 0
복습 어케해야되지?
-
문디컬 사1과1 vs 사2 차이 많이나나요? ㅜㅜ 16
언매 미적 생명 사문 하고있고 메디컬 목표인데 생명이 이번 6모땐 찍은걸 2개나...
-
내는 거였을 거 같음 그냥 숭고한 대상 바라보면서 경외감느낀다는건 뭐 많이 쓰는 말이잖어
-
만물이론 0
1. 제1원인은 결정론적 원인이 없다2. 따라서 제1원인은 비결정론적이다 3....
-
정시는 잘보면 메쟈의 중경한 + 설치 설수의 생각하고 있고 이번 6모 언매100...
-
하..
-
말씀드린대로 5/17~ 한 달 간 작성되는 좋은 영어 칼럼에 10만덕을 보낼려고...
-
내신으로 자이스토리랑 고쟁이 정도만 풀고 공통 공부 따로 안 햇는데 실전 개념 좀...
-
너무 어려워보임 2점짜리도 171130가보다 어려워보인다
-
수특 수완 문학 비문학 다 거르고 수능보면 100점 맞을 사람도 90점이하로 떨어질정도인가요?
-
다전제의 T1을 믿어볼까 MSI는 꾸준히 가기는했는데 옵챔스도 너무 재밌어보여서 고민되는구만
-
와.. 역시 하루키
-
탈릅할까 0
.
-
선택해주실분 5
해군수송 공군운전병 둘다 붙을거같은데 공군 요즘 뭐 이상한소문돌고있어서 해군이...
-
시발 전쟁이요?? 12
에헤이
-
미적분 박살내주마 흐흐
-
다 덤벼라 ㅋㅋ 6
-
[속보] AFP "이스라엘 공군, 이란 수도 테헤란 공습" 4
이스라엘 공군이 이란의 수도 테헤란을 공습했다고 다수의 해외언론이 보도했습니다....
-
이제막 엔제 시작하는 수학 2-3 재수생인데 강대x 풀패키지 어떨지 고민입니다....
-
퇴사 완료 5
ㅅㅂ..
-
너무 졸려 헹
-
올해까지 알바로 돈 모았고 슬슬 >>2027학년도<<< 수능 준비하려고 하는대요...
-
최홍철 미친놈 0
자기 일 터진걸 저렇게 가사로 풀어내다니 아가각 하던 때에서 몇단계를 발전한거냐
-
독학 재수 중인 문과입니다. 성북구쪽에 살고 있어서 가까운 독재학원 가려 합니다....
-
sin(cos(sin(cos...(x)))...
-
김종익 개념듣고있는데 현돌이랑 병행해도 되나요? 아니면 좋은거 추천해주시면 감사하겠습니다
-
다시 풀어도 14분인데 여기서 단축해야 되나요? 문제는 손가락도 걸고 짧게짧게...
-
저렇게 한번에 욕 먹는 것도 재능이누
-
221122
-
수시 최저러인데 지금 지구과학은 개념 두 바퀴정도 돌림. 기말 끝나고 부터 달리면...
-
기만질 하겠음 16
압구정에 투룸 전세집있음
-
국어 독서 질문 3
독서 문제를 풀때 다른 문제들은 항상 잘 맞추는데 유독 이런 문제 유형에서 삑사리가...
-
맨날 쌤 ~~~하면 안돼요? 이러면서 징징대는 애들.. 턱주가리에 섬머솔트킥 꼽고싶음
-
22기하 백94 높2고 양심상 수능대비 대신 내신대비 과외만 모집하고 있는데...
-
너무 슬픈 시간이 찾아오고있어
-
수1 너무 맛없음 231122 241122 같은거 보고싶은데 아니면 파격적이게...
-
점심시간에 자기랑 친한 노는 여자애+남자애들 데리고 카페가기 자기랑 친한 애들이랑...
-
n기출 미친기분 0
n기출 4점집중에 있는 문제들이 이미지t미친기분 완성편에 있는 문제들이랑 많이...
-
150일 부터 매일 안빠지고 14시간 하면 몇퍼정도됨? 3
수능전까지 14시간 매일 하루도 안빠지고 인강 포함 14시간식 150일 하면 표본중...
260628, 170930에서 두 번 미분해야 하는 이유를 표로 정리하면 다음과 같습니다.