[칼럼] 『영역전개』 "벡터해석"
게시글 주소: https://orbi.kr/00073056448
기하의 주요한 세 파트는
이차곡선, 공간도형, 벡터입니다
이 중 이차곡선은 지금까지 해온 평면 기하의 연장선이니 수험생들이 상당히 빠르게 익숙해지며
공간도형의 경우에도 사교육 걱정으로부터 수험생들을 해방하려는 고결한 노력 끝에
평면의 방정식 등이 대거 약화되고, 평가원도 문제를 좀 쉬엄쉬엄 내주는 덕에
숨 쉴 구멍이 많이 생겼습니다
하지만 벡터의 경우는 이야기가 좀 다른데
지금까지 수학에서 접했던 존재들과는 결이 다릅니다
길이, 넓이, 부피, 속력
초등학교 때부터 우리는 무슨 길이를 구하라느니, 움직이는 동안 걸린 시간이 얼마라느니
소금물에 물을 탔다가 소금을 탔다가 소금물끼리 섞었다가
이러한 스칼라 값을 수학적으로 다루는 것에 집중해왔습니다
하지만 벡터는 단순히 크기만 가지는 것이 아니라 '방향'이라는 요소가 도입된
지금까지 우리가 해온 수학과는 범주 자체가 다른 존재라고 할 수 있습니다
그렇기에 낯설죠
이렇게 근본적으로 다른 존재이기 때문에
벡터끼리 더하고 빼는 기초 연산부터 다시 정의됩니다
게다가 사교육 걱정이 사라진 덕분에 벡터가 평면이라는 족쇄를 차게 되면서
어떻게든 생소하고 낯선 상황을 제시하려는 평가원의 몸비틀기가 더 심해지고 있습니다
따라서 축이 하나 줄어든 벌로 수험생들은 벡터 자체를 해석하는 능력을 더욱 정교화할 것을 요구받고 있는데
이는
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에 대해서 0을 확실하게 숙지하고 1, 2, 3 간의 관점 전환을 자유롭게 할 수 있어야 함을 의미합니다
그 중에서 이번에는 '3'에 집중해서 문제를 관찰해보겠습니다
24년 6월 30번으로 대놓고 X가 나타내는 영역의 넓이를 구하는 문제죠
따라서 수험생들이 3번의 관점으로 접근했다면 문제를 쉽게 맞출 수 있었습니다
EBS에서도 '영역으로 푸세요 ㅎㅎ라'고 해설하고 있죠
하지만 여기서도 1의 관점이 조금 필요한데
직선 위의 점 P와 타원 위의 점 Q 중 하나는 점으로 보고 다른 하나를 영역으로 간주하여
점으로 보는 벡터에 대해서 영역을 옮겨야 X의 영역이 제대로 나타나기 때문입니다
P를 점으로 보고자 한다면 타원의 중심이 직선 위를 움직이는 영역으로 나타날 것이고
Q를 점으로 보고자 한다면 직선이 타원 위를 빙글빙글 돌아가는 영역으로 나타날 것이기 때문입니다
메가 기준 정답률 8%로 바닥을 긴 23년 6월 30번
(가)와 (나)가 모두 CX와 관련된 식인데 도무지 두 식을 어떻게 연관지어야 할지
또 그 이후에는 CX를 어떻게 처리할지가 난관이었다고 생각됩니다
전자의 경우는 0 즉 벡터의 연산과 성질 자체에 대해 익숙치 않아서 생긴 문제라면
후자의 경우는 (가)와 (나)를 통해 얻은 벡터의 해석이 미숙해서 생긴 문제라 할 수 있습니다
이 역시 영역의 관점을 도입하면 해결됩니다
먼저 (가)와 (나)를 해석하면
이렇게 정리할 수 있는데 CX에 대한 조건이 두 개나 걸려있습니다
과연 저 두 조건을 어떻게 해석해야 하나... 여기에서 1의 관점을 한번 사용해봅시다
일단 (가)의 조건이 모호하니, 좀 더 구체적인 (나)를 정리한 조건을 이용하면
제시된 세 벡터의 시점이 모두 C니까 C를 원점으로 하고 CD를 x축으로 하는 평면을 도입해보면
CX는 C를 원점으로 할 때, y좌표가 sqrt(3)인 점이 (나) 조건의 의미라 할 수 있겠네요
그렇다면 이제 (가)로 돌아가서
P가 정육각형 위의 점이고, Q가 원 위의 점인데, 제시된 벡터 모두 시점이 C로 동일한데
기시감이 느껴지지 않으시나요?
얘랑
얘는
시점의 알파벳만 다르고 상황이 똑같지 않습니까?
아까 문제를 해석할 때
한 벡터를 점으로 보고, 다른 벡터를 영역으로 보면
후자의 영역이 전자의 도형을 움직이는 영역으로 표시됐던 것 기억하시죠?
따라서
이를 시각적으로 나타내면
다음과 같은 회색 영역이 X로 가능한 영역임을 알 수 있습니다
그런데 아까 X는 y좌표가 sqrt(3)인 점이라고 했죠?
그러므로 CX가 최소일 때는 X_1, 최대일 때는 X_2가 되어야 함을 알 수 있습니다
그렇다면 X가 X_1일 때 2-k=0이고, X_2일 때는 2-k=4이므로 alpha=2, beta=-2입니다
비슷한 관점에서 이 문제 역시 영역을 도입한다면
시각적으로 언제가 최소가 되고 언제 최대가 되는지 확실하게 알 수 있습니다
결론)
료이키
텐카이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
외로워졌군 12
모든 것엔 부작용이 있는 법
-
.
-
생공vs화공 0
취업전망 (둘 다 석사까지 한다는 가정 하에)
-
과탐과 선택과 뭘 해야 되나요? 대부분 뭘 많이 고르시나요 ? 미적분과 언매는 거의...
-
요즘 날씨가 자주 변하네요 다들 꼭꼭 몸조심하기!!
-
1. 제2외국어/한문 영역 가이드 [제2외국어/한문 영역 가이드] 0. 노베이스로...
-
지금까지 교대 관련된 기출인줄 알았네 엄 내가 트렌드에 못 따라가는 줄
-
이게 맞나
-
아 하늘에서 19
한완기 교사경이 수1수2기하 풀세트로다가 떨어졌으면 좋겠네
-
국어 질문 2
취클래스랑 앱스키마랑 포지션이 겹치나요?? 강의는 동욱쌤이랑 잘맞는데 앱스키마도 수강하고 싶습니다.
-
작년꺼 사서 푸는거 굳이일까요? 지금부터 슬슬 실모 건드려 보려고 하는데 아직 올헤...
-
10번댄데 너무어려운데
-
확통 3
시발점 다 들었는데 이제 뭐 풀죠? 강의 듣기보다 문제를 좀 많이 풀어보고 싶은데 추천해주세요ㅠ
-
최고차항 계수가 음수인 이차함수를 그냥 와바밧일루와잇응애앳
-
성적표에 0.1% 찍혀있으면 된거잖아 뭐가 이리 깐깐해
-
하 수능마려워 2
자글에 끌려다니는거 무지개같다
-
그게 일주일쯤 지속되니 진짜공부가되고있음 이걸의도하신건가
-
10시간 뒤 공군 면접 10
현재 만취 ㅈ됐다
-
진짜 그릇된상텐데 지금 해서 뭐가 바뀌려나
-
일단 모고 국어3수학4영어4 나오고여 모고도 이 지경이긴 한데 내신은 더 망해서...
-
잘건데 잘자라고 해주고 가셈
-
오늘을 살아갑니다.
-
문과 18등 > 전국 294등 문 돌 이 들 학 력 저 하 뭐 지 다 노
-
구해질까요?
-
? 나만 모르는건가
-
수의대vs화공 0
.
-
M스킬 1
사문 좀 늦게 시작해서 이제 개념 끝났는데 6모전까지 개념 기출만 하고 M스킬은...
-
https://orbi.kr/00073058060 남은거 2211생2 2211화2...
-
아미친 3
제출실패함 휴학마려워
-
왜하는걸까 수능날 신이라도 강림하는거임? 그보다 독서론은 국어황들 ㅈㄴ 빨리 풀더라 벽 느껴지게
-
재종에서 독재로 옮겼는데 이유가 과민성 대장증후군때문이에요.. 재종에서 특히...
-
검정치마 Antifreeze...
-
아예 좋아요 0개는 좀 상처네... 그래도 가장 중요한 부분은 다 들어갔을텐데 역시...
-
밀려오는 콘텐츠들
-
으으으ㅡㅇ 18
자꾸 개념 따먹어ㅓㅓ 심심하면 스피드 개념강의 가튼거 들어볼까
-
편의점에서 레몬진 두캔을 샀는데 먹을 곳이 없다는 거임 0
그래서 에?? 하고 길에서 10분안에 콸라콸하니까 취한 것 같음
-
작성글 정리 2
도움되는 답변이 남은 질문글이라든가... 뭔가 그냥 내 흔적 지우자고 지우긴...
-
하이요 4
4일동안 휴릅하고옴
-
한화가 강세여서
-
머좀물어보랴구
-
고3 현역 정시 제발 도와주세요 정말 간절해서 열심히 할 자신 있습니다 8
안녕하세요 현 고3 허수입니다 고1 때 아예 놀면서 공부랑은 거리가 멀다가 고2 때...
-
김준 강의에서 들은 얘기인데 수학에도 적용이 되려나 내가 수학 풀이 엄청 더럽고...
-
아빠 난 아빠처럼 누군가의 아버지는 되어주지 못할것만 같아서 11
할머니 할아버지란 말은 내 동생의 자식들에게만 들을수도 있다는걸 알아둬
-
정병 걸리겠네 6
장학기준 유지 ㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂ
-
한평통 개같다 1
숭실대 ㅗㅗㅗㅗㅗ 그리고 난 몇시에 잠든거지?
공간도형 많이 봐주고 있는 거 같긴 해요
기하 응시자가 많이 없다보니까 기출뺑뺑이로 갈려는 거 같은데 벡터는 얘기가 다르긴 하죠 낯설기도 하고
기출소재로 내도 대가리 터질수도 있으니까..
스크랩해놓고 심심할때마다 읽어야겟음 좋은 글 감사합니당
애초에 공간 자체가 팔다리 다 잘리고 삼수선만 남은지라 상황을 꼬아내는 자체에 한계가 생기다보니 ㅜ
그래서 평벡에서 온몸 비트는 거 같긴 합니다 ㅋㅋㅋ
진짜 개처럼 개추를
벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅
[짧럼] 울트라맨 칼럼 독해법
1. 스크롤을 아래로 쭉 긁는다
2. 세 줄 요약을 읽는다
3. 스크롤을 맨 위로 올려서 요약대로 구간을 나누어 정독한다
'이번엔 두 줄'
그저 빛.. 감사합니다
기하 화이팅

기하러 좋아요 누르고 갑니다사걱세 덕분에 141129같은 흉악한 킬러로부터 수험생들이 해방되니 기쁘도다
요즘 기하 난이도가 적절히 잘 나오는 듯해요
푸는 맛이 좋아서 계속 하게 되네여
평면으로 한정된 덕에 상황 해석하는 난도가 높아진 덕분 같아요
캬 떴다
오늘 프메 영역 파트 강의 듣기 전에 문제 푸는데 앞과 다르게 진짜 모르겠어서 내가 문제 있는 건가 싶었는데 원래 난이도가 있는 파트였군요 참고 열심히 해보겠습니다
(혹시 이런 파트 잘 안 풀리면 벡터 초반 부분 기출 파트 전부 끝내고 공부하나요 아님 우선 부딪혀보나요...?)
후속 칼럼에서 짧게 언급 했으니 참고 해주세요
https://orbi.kr/00073065974/%255B%EC%B9%BC%EB%9F%BC%255D%2520%E3%80%8E%EC%98%81%EC%97%AD%EC%A0%84%EA%B0%9C%E3%80%8F%2520'%EC%96%B4%EC%A0%9C%EA%B1%B0%EB%B3%B4%EC%B6%A9'
어림도 없지 이쪽도 료이키 텐카이 무료쿠쇼!
영역대결을 해보자!◕‿◕
사실 주술회전 안 봤음
공간도형은 대체 어떻게 풀이하는 거였나요..??
1. 삼수선을 찾는다
2. 1을 잊지 않는다
기하 잘하는 사람들은 이차곡선, 처음하는 사람들은 공간도형을 어려워한다 라고들 말하는데 저는 문제를 풀면 풀수록 벡터가 제일 맵더라구요
걍 벡터가 제일 어려운게 맞음요
이차곡선은 뭐 사설에서 케이스 개꼬아서 냈을 때나 아니면 방심하고 유기하다가 빡 맞는경우거나..
다들 고이면 벡터가 제일 쉽다는데 저만 어려워하던게 아니었군요ㅜㅜ 진짜 벡터는 관점을 돌린다고 문제 노려보는 시간이 제일 길고 풀때 호흡도 길어서 힘들더라구요
이차곡선은 그냥 수1 연장선이라서 기하느낌이 제일 안나죠. 저는 개인적으로 제일 노잼이에요
공도는 기하 그 자체고...
벡터는 문제에서 내주는 조건 해석만 쭉쭉 잘 따라가면 아무리 어려운 문제라도 답을 쉽게 낼 수 있는데 그 조건 해석을 적절하게 하는 게 어려운 것 같아요. 예를 들어 벡터의 합을 누구는 내분점으로 해석하고 누구는 성분화해보고 누구는 제곱해보고 누구는 분해하거나 평행이동해서 자취로 표현해보고... 잘 안 풀리면 현T께서 말씀하신 것처럼 손절이 익절이라고 빨리 다른 방법으로 넘어가야 되는데 그게 쉽지 않죠. 미적 30은 손도못대는 경우가 많은데 기하 30은 벡터 못하는 사람이어도 조건 해석만 잘하면 5분컷 할 수 있다고 생각해요. 출제의도대로 조건 해석하는 게 힘들어서 그렇지...
공도는 진짜 팔다리 다 날아가서 어렵게 내는데 한계가 뚜렷합디다
기하러인데 너무 잘봤어요 감사합니다
기하 화이팅