[칼럼] 『영역전개』 "벡터해석"
게시글 주소: https://orbi.kr/00073056448
기하의 주요한 세 파트는
이차곡선, 공간도형, 벡터입니다
이 중 이차곡선은 지금까지 해온 평면 기하의 연장선이니 수험생들이 상당히 빠르게 익숙해지며
공간도형의 경우에도 사교육 걱정으로부터 수험생들을 해방하려는 고결한 노력 끝에
평면의 방정식 등이 대거 약화되고, 평가원도 문제를 좀 쉬엄쉬엄 내주는 덕에
숨 쉴 구멍이 많이 생겼습니다
하지만 벡터의 경우는 이야기가 좀 다른데
지금까지 수학에서 접했던 존재들과는 결이 다릅니다
길이, 넓이, 부피, 속력
초등학교 때부터 우리는 무슨 길이를 구하라느니, 움직이는 동안 걸린 시간이 얼마라느니
소금물에 물을 탔다가 소금을 탔다가 소금물끼리 섞었다가
이러한 스칼라 값을 수학적으로 다루는 것에 집중해왔습니다
하지만 벡터는 단순히 크기만 가지는 것이 아니라 '방향'이라는 요소가 도입된
지금까지 우리가 해온 수학과는 범주 자체가 다른 존재라고 할 수 있습니다
그렇기에 낯설죠
이렇게 근본적으로 다른 존재이기 때문에
벡터끼리 더하고 빼는 기초 연산부터 다시 정의됩니다
게다가 사교육 걱정이 사라진 덕분에 벡터가 평면이라는 족쇄를 차게 되면서
어떻게든 생소하고 낯선 상황을 제시하려는 평가원의 몸비틀기가 더 심해지고 있습니다
따라서 축이 하나 줄어든 벌로 수험생들은 벡터 자체를 해석하는 능력을 더욱 정교화할 것을 요구받고 있는데
이는
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에 대해서 0을 확실하게 숙지하고 1, 2, 3 간의 관점 전환을 자유롭게 할 수 있어야 함을 의미합니다
그 중에서 이번에는 '3'에 집중해서 문제를 관찰해보겠습니다
24년 6월 30번으로 대놓고 X가 나타내는 영역의 넓이를 구하는 문제죠
따라서 수험생들이 3번의 관점으로 접근했다면 문제를 쉽게 맞출 수 있었습니다
EBS에서도 '영역으로 푸세요 ㅎㅎ라'고 해설하고 있죠
하지만 여기서도 1의 관점이 조금 필요한데
직선 위의 점 P와 타원 위의 점 Q 중 하나는 점으로 보고 다른 하나를 영역으로 간주하여
점으로 보는 벡터에 대해서 영역을 옮겨야 X의 영역이 제대로 나타나기 때문입니다
P를 점으로 보고자 한다면 타원의 중심이 직선 위를 움직이는 영역으로 나타날 것이고
Q를 점으로 보고자 한다면 직선이 타원 위를 빙글빙글 돌아가는 영역으로 나타날 것이기 때문입니다
메가 기준 정답률 8%로 바닥을 긴 23년 6월 30번
(가)와 (나)가 모두 CX와 관련된 식인데 도무지 두 식을 어떻게 연관지어야 할지
또 그 이후에는 CX를 어떻게 처리할지가 난관이었다고 생각됩니다
전자의 경우는 0 즉 벡터의 연산과 성질 자체에 대해 익숙치 않아서 생긴 문제라면
후자의 경우는 (가)와 (나)를 통해 얻은 벡터의 해석이 미숙해서 생긴 문제라 할 수 있습니다
이 역시 영역의 관점을 도입하면 해결됩니다
먼저 (가)와 (나)를 해석하면
이렇게 정리할 수 있는데 CX에 대한 조건이 두 개나 걸려있습니다
과연 저 두 조건을 어떻게 해석해야 하나... 여기에서 1의 관점을 한번 사용해봅시다
일단 (가)의 조건이 모호하니, 좀 더 구체적인 (나)를 정리한 조건을 이용하면
제시된 세 벡터의 시점이 모두 C니까 C를 원점으로 하고 CD를 x축으로 하는 평면을 도입해보면
CX는 C를 원점으로 할 때, y좌표가 sqrt(3)인 점이 (나) 조건의 의미라 할 수 있겠네요
그렇다면 이제 (가)로 돌아가서
P가 정육각형 위의 점이고, Q가 원 위의 점인데, 제시된 벡터 모두 시점이 C로 동일한데
기시감이 느껴지지 않으시나요?
얘랑
얘는
시점의 알파벳만 다르고 상황이 똑같지 않습니까?
아까 문제를 해석할 때
한 벡터를 점으로 보고, 다른 벡터를 영역으로 보면
후자의 영역이 전자의 도형을 움직이는 영역으로 표시됐던 것 기억하시죠?
따라서
이를 시각적으로 나타내면
다음과 같은 회색 영역이 X로 가능한 영역임을 알 수 있습니다
그런데 아까 X는 y좌표가 sqrt(3)인 점이라고 했죠?
그러므로 CX가 최소일 때는 X_1, 최대일 때는 X_2가 되어야 함을 알 수 있습니다
그렇다면 X가 X_1일 때 2-k=0이고, X_2일 때는 2-k=4이므로 alpha=2, beta=-2입니다
비슷한 관점에서 이 문제 역시 영역을 도입한다면
시각적으로 언제가 최소가 되고 언제 최대가 되는지 확실하게 알 수 있습니다
결론)
료이키
텐카이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강의들은 파트 기출 쭉 푸니까 행동영역들 떠오르면서 풀이방향 잡히는거보고 계속 듣는중
-
으음...
-
이준석, 이공계 육성 공약… "과학자, 국가 영웅으로 예우" 18
이준석 개혁신당 대선 후보가 과학자, 연구자, 기술자 등을 우대하는 내용의 공약을...
-
끼얏호우~ 2
오전공부 4시간 50분
-
맛점 2
-
요즘 이것만 봄 1
지용이형 리즈시절
-
소개해달라할까ㅋㅋ
-
모교에서 성적 다 앎?
-
엄빠한테 합격하고 “나 이제 계의(GAY)야 남자 좋아할 수 있어!” ㅇㅈㄹ했다가...
-
하2 2
이이이
-
2506,09,11 22번으로 나온 only나열 수열들 몇분이면 푸세요
-
5년 뒤엔 18
일본에서 살고있을 수 있을까
-
오르비 댓글에서 본 미친 삼각함수 문제가 드릴6일줄이야.. 한문제는 그냥 못풀겠다 ㅋㅋㅋ
-
결정 끝.
-
190일의 기적 누리게 해주실분 구함 고3임
-
점심에 자는 엄청난 자유 아.. 이 얼마만인가…
-
[속보] 서울고법 “이재명 재판, 대선 후 6월 18일로 변경” 6
“법원, 어떤 외부 영향이나 간섭 받지 않아” 고법 “선거운동 기회 보장하고 공정성...
-
김동욱 연필통 다들 푸시나요? 그냥 다른거 풀지 괜찮으면 그냥 풀지 고민입니다
-
학교에서 해명 논리랍시고 psi가 기본량이다 ㅇㅈㄹ했다는데 이거 어케 조지죠
-
오랜만에 사치를 0
맛있네
-
6,9,수땐 안이러겠지 제발
-
인생 망함 8
구제책 없나
-
화학이 ㄹㅇ 가망이 없는데... 2학기에도 1로 올릴 수 있고...
-
기하 기출문제집 5
추천해주세여~ 수분감 자이 한완기 등등 꽤 있는데 기하는 기출이 중요한듯 해서...
-
사탐이 과탐보다 얼마나 쉬움?
-
작수 언미물지 12233 로 한양대상경 들어갔습니다 물리를 지구보다 잘해요 생윤...
-
보통 삼수~사수 하나요?!?
-
탐구 좆된거같은데
-
쿨거 원하고 완전 양도 원해요.
-
사문-그냥 사람들이 엄청 많이함 세지-적성에 잘 맞음, 내신 개같은 암기로 암기에...
-
삼성 이재용 회장 외가 쪽 보면 진짜 공부 잘 한듯... 0
외할아버지 홍진기 : 경성제국대학 법학과(고등문관시험 합격)어머니 홍라희 : 서울대...
-
국어 언매 질문 7
나는 그가 있는 가게로 저녁에 갔다 이 문장에서 ‘서술어가 필수적으로 요구하는...
-
공군 합격 제발 1트에가자
-
9모 수능 접수 1
군인이면 군부대 근처에서 시험볼 수 있나요? 아니면 거주지 근처로 가야하나요
-
원래 하고있던거 있긴 했는데 좀 문제가 생겨버려서 유튜브 편집 일인데 사장님이 일을...
-
일단 이번 중간고사가 망했다고 예상은 하고 있었어. 근데 이정도로 망할줄은 몰랐어서...
-
옯뉴비예요
-
중간 올에이플 각 만들어놓음 ㅋㅋ 작년에 집에서 할 때보다 공부량이 많은건 역시...
-
ㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅ 캬 이게 자본주의지 흐흐
-
영어 1등급 가보자 캬캬
-
강기분 독학 1
고2입니다. 강기분 문학이 솔직히 강의 들어도 얻어가는게 기본 개념설명 말고 거의...
-
안녕하세요. 경북대학교 의예과 23학번 지니입니다. 생명과학 1을 어려워하는...
-
고민좀봐주세요 2
제가 지금 재수중인데 올해로 25살입니다. 현재 전문대 휴학한 상태이고...
-
ㅈㄱㄴ
-
더프처럼 온라인 응시는 안되는건가
-
정석킥!!!! 0
아뵤~
-
햄버거 들어와 0
대학생이 된 친구들아ㅏ 설캠 대핟생 햄버거 먹을 사람~ 〰️?햄버거 점령할 곳?〰️...
-
치는 게 좋을까여.. 지금 수학 자이스토리 과탐 기출 ( 지1 생2 ) 하는 중인데
공간도형 많이 봐주고 있는 거 같긴 해요
기하 응시자가 많이 없다보니까 기출뺑뺑이로 갈려는 거 같은데 벡터는 얘기가 다르긴 하죠 낯설기도 하고
기출소재로 내도 대가리 터질수도 있으니까..
스크랩해놓고 심심할때마다 읽어야겟음 좋은 글 감사합니당
애초에 공간 자체가 팔다리 다 잘리고 삼수선만 남은지라 상황을 꼬아내는 자체에 한계가 생기다보니 ㅜ
그래서 평벡에서 온몸 비트는 거 같긴 합니다 ㅋㅋㅋ
진짜 개처럼 개추를
벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅
[짧럼] 울트라맨 칼럼 독해법
1. 스크롤을 아래로 쭉 긁는다
2. 세 줄 요약을 읽는다
3. 스크롤을 맨 위로 올려서 요약대로 구간을 나누어 정독한다
'이번엔 두 줄'
그저 빛.. 감사합니다
기하 화이팅

기하러 좋아요 누르고 갑니다사걱세 덕분에 141129같은 흉악한 킬러로부터 수험생들이 해방되니 기쁘도다
요즘 기하 난이도가 적절히 잘 나오는 듯해요
푸는 맛이 좋아서 계속 하게 되네여
평면으로 한정된 덕에 상황 해석하는 난도가 높아진 덕분 같아요
캬 떴다
오늘 프메 영역 파트 강의 듣기 전에 문제 푸는데 앞과 다르게 진짜 모르겠어서 내가 문제 있는 건가 싶었는데 원래 난이도가 있는 파트였군요 참고 열심히 해보겠습니다
(혹시 이런 파트 잘 안 풀리면 벡터 초반 부분 기출 파트 전부 끝내고 공부하나요 아님 우선 부딪혀보나요...?)
후속 칼럼에서 짧게 언급 했으니 참고 해주세요
https://orbi.kr/00073065974/%255B%EC%B9%BC%EB%9F%BC%255D%2520%E3%80%8E%EC%98%81%EC%97%AD%EC%A0%84%EA%B0%9C%E3%80%8F%2520'%EC%96%B4%EC%A0%9C%EA%B1%B0%EB%B3%B4%EC%B6%A9'
어림도 없지 이쪽도 료이키 텐카이 무료쿠쇼!
영역대결을 해보자!◕‿◕
사실 주술회전 안 봤음
공간도형은 대체 어떻게 풀이하는 거였나요..??
1. 삼수선을 찾는다
2. 1을 잊지 않는다
기하 잘하는 사람들은 이차곡선, 처음하는 사람들은 공간도형을 어려워한다 라고들 말하는데 저는 문제를 풀면 풀수록 벡터가 제일 맵더라구요
걍 벡터가 제일 어려운게 맞음요
이차곡선은 뭐 사설에서 케이스 개꼬아서 냈을 때나 아니면 방심하고 유기하다가 빡 맞는경우거나..
다들 고이면 벡터가 제일 쉽다는데 저만 어려워하던게 아니었군요ㅜㅜ 진짜 벡터는 관점을 돌린다고 문제 노려보는 시간이 제일 길고 풀때 호흡도 길어서 힘들더라구요
이차곡선은 그냥 수1 연장선이라서 기하느낌이 제일 안나죠. 저는 개인적으로 제일 노잼이에요
공도는 기하 그 자체고...
벡터는 문제에서 내주는 조건 해석만 쭉쭉 잘 따라가면 아무리 어려운 문제라도 답을 쉽게 낼 수 있는데 그 조건 해석을 적절하게 하는 게 어려운 것 같아요. 예를 들어 벡터의 합을 누구는 내분점으로 해석하고 누구는 성분화해보고 누구는 제곱해보고 누구는 분해하거나 평행이동해서 자취로 표현해보고... 잘 안 풀리면 현T께서 말씀하신 것처럼 손절이 익절이라고 빨리 다른 방법으로 넘어가야 되는데 그게 쉽지 않죠. 미적 30은 손도못대는 경우가 많은데 기하 30은 벡터 못하는 사람이어도 조건 해석만 잘하면 5분컷 할 수 있다고 생각해요. 출제의도대로 조건 해석하는 게 힘들어서 그렇지...
공도는 진짜 팔다리 다 날아가서 어렵게 내는데 한계가 뚜렷합디다
기하러인데 너무 잘봤어요 감사합니다
기하 화이팅