[칼럼] 『영역전개』 "벡터해석"
게시글 주소: https://orbi.kr/00073056448
기하의 주요한 세 파트는
이차곡선, 공간도형, 벡터입니다
이 중 이차곡선은 지금까지 해온 평면 기하의 연장선이니 수험생들이 상당히 빠르게 익숙해지며
공간도형의 경우에도 사교육 걱정으로부터 수험생들을 해방하려는 고결한 노력 끝에
평면의 방정식 등이 대거 약화되고, 평가원도 문제를 좀 쉬엄쉬엄 내주는 덕에
숨 쉴 구멍이 많이 생겼습니다
하지만 벡터의 경우는 이야기가 좀 다른데
지금까지 수학에서 접했던 존재들과는 결이 다릅니다
길이, 넓이, 부피, 속력
초등학교 때부터 우리는 무슨 길이를 구하라느니, 움직이는 동안 걸린 시간이 얼마라느니
소금물에 물을 탔다가 소금을 탔다가 소금물끼리 섞었다가
이러한 스칼라 값을 수학적으로 다루는 것에 집중해왔습니다
하지만 벡터는 단순히 크기만 가지는 것이 아니라 '방향'이라는 요소가 도입된
지금까지 우리가 해온 수학과는 범주 자체가 다른 존재라고 할 수 있습니다
그렇기에 낯설죠
이렇게 근본적으로 다른 존재이기 때문에
벡터끼리 더하고 빼는 기초 연산부터 다시 정의됩니다
게다가 사교육 걱정이 사라진 덕분에 벡터가 평면이라는 족쇄를 차게 되면서
어떻게든 생소하고 낯선 상황을 제시하려는 평가원의 몸비틀기가 더 심해지고 있습니다
따라서 축이 하나 줄어든 벌로 수험생들은 벡터 자체를 해석하는 능력을 더욱 정교화할 것을 요구받고 있는데
이는
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에 대해서 0을 확실하게 숙지하고 1, 2, 3 간의 관점 전환을 자유롭게 할 수 있어야 함을 의미합니다
그 중에서 이번에는 '3'에 집중해서 문제를 관찰해보겠습니다
24년 6월 30번으로 대놓고 X가 나타내는 영역의 넓이를 구하는 문제죠
따라서 수험생들이 3번의 관점으로 접근했다면 문제를 쉽게 맞출 수 있었습니다
EBS에서도 '영역으로 푸세요 ㅎㅎ라'고 해설하고 있죠
하지만 여기서도 1의 관점이 조금 필요한데
직선 위의 점 P와 타원 위의 점 Q 중 하나는 점으로 보고 다른 하나를 영역으로 간주하여
점으로 보는 벡터에 대해서 영역을 옮겨야 X의 영역이 제대로 나타나기 때문입니다
P를 점으로 보고자 한다면 타원의 중심이 직선 위를 움직이는 영역으로 나타날 것이고
Q를 점으로 보고자 한다면 직선이 타원 위를 빙글빙글 돌아가는 영역으로 나타날 것이기 때문입니다
메가 기준 정답률 8%로 바닥을 긴 23년 6월 30번
(가)와 (나)가 모두 CX와 관련된 식인데 도무지 두 식을 어떻게 연관지어야 할지
또 그 이후에는 CX를 어떻게 처리할지가 난관이었다고 생각됩니다
전자의 경우는 0 즉 벡터의 연산과 성질 자체에 대해 익숙치 않아서 생긴 문제라면
후자의 경우는 (가)와 (나)를 통해 얻은 벡터의 해석이 미숙해서 생긴 문제라 할 수 있습니다
이 역시 영역의 관점을 도입하면 해결됩니다
먼저 (가)와 (나)를 해석하면
이렇게 정리할 수 있는데 CX에 대한 조건이 두 개나 걸려있습니다
과연 저 두 조건을 어떻게 해석해야 하나... 여기에서 1의 관점을 한번 사용해봅시다
일단 (가)의 조건이 모호하니, 좀 더 구체적인 (나)를 정리한 조건을 이용하면
제시된 세 벡터의 시점이 모두 C니까 C를 원점으로 하고 CD를 x축으로 하는 평면을 도입해보면
CX는 C를 원점으로 할 때, y좌표가 sqrt(3)인 점이 (나) 조건의 의미라 할 수 있겠네요
그렇다면 이제 (가)로 돌아가서
P가 정육각형 위의 점이고, Q가 원 위의 점인데, 제시된 벡터 모두 시점이 C로 동일한데
기시감이 느껴지지 않으시나요?
얘랑
얘는
시점의 알파벳만 다르고 상황이 똑같지 않습니까?
아까 문제를 해석할 때
한 벡터를 점으로 보고, 다른 벡터를 영역으로 보면
후자의 영역이 전자의 도형을 움직이는 영역으로 표시됐던 것 기억하시죠?
따라서
이를 시각적으로 나타내면
다음과 같은 회색 영역이 X로 가능한 영역임을 알 수 있습니다
그런데 아까 X는 y좌표가 sqrt(3)인 점이라고 했죠?
그러므로 CX가 최소일 때는 X_1, 최대일 때는 X_2가 되어야 함을 알 수 있습니다
그렇다면 X가 X_1일 때 2-k=0이고, X_2일 때는 2-k=4이므로 alpha=2, beta=-2입니다
비슷한 관점에서 이 문제 역시 영역을 도입한다면
시각적으로 언제가 최소가 되고 언제 최대가 되는지 확실하게 알 수 있습니다
결론)
료이키
텐카이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대인재 볼텍스 2
볼텍스(수1수2기준) 난이도가 어떻게 되나요? 엔티켓이나 사규보다 더 어렵나여
-
맞팔하실분 4
ㅈㅂ
-
민주, 법사위 소위서 '대통령 당선시 재판정지' 형소법 처리 29
김건희·내란·채해병 특검법, 검사징계법도 소위 의결 (서울=연합뉴스) 박경준 오규진...
-
좀요 교재를...
-
흠..
-
월급받음 4
8일일한거
-
쉬운데? 안찍고 만점일 정도면. 이대로 수능에 나오면 47보다 높게 잡힐듯...
-
자퇴 5
할게요
-
한의대 가고시프다
-
크아아아ㅏㅇ아
-
08 정시파이터 0
고2인데 1학년때 3점대 후반뜨다가 이번 중간고사때 3점대 초반 뜰거같습니다. 내신...
-
평가원식으로 백분위 99컷이 원점수 77점이고 백분위 100컷이 원점수 82점
-
세상을 넘어 신나게 춤을추ㅏ바
-
김범준 듣는분들 2
카나토미 한강씩밖에 안올라온거 진짜에요? 그냥 개웃기네ㅋㅋㅋㅋㅋ
-
지구과학1 질문 8
우주 모형 부분이 이해가 잘 안갑니다..ㅠㅜ 프리드만의 우주모형은 암흑에너지 고려...
-
마더텅 굵기 실환가? 원래 이렇게까지 굵었었나? 검더텅 문학, 독서 샀는데 개무겁네요
-
드릴 이해원 또 뭐있지
-
쪽쪽 빨아야 생기는거임? 어떻게 붉게 변하냐 신기하네
-
트럼프 “8~9일, 세상 놀라게 할 중대 발표…무역과는 무관” 16
도널드 트럼프 미국 대통령이 중동 순방을 앞두고 “8~9일 세상을 놀라게 할 중대...
-
를 어떻게 이해해야 할까요? 야단스럽다라고는 하는데 현대의 소란스럽다는 의미와...
-
승무 풀이 5
이 문제 풀 때 2번의 상승 이미지가 틀렸다 해서 2번으로 했는데 이렇게 푼게...
-
이거 6모 평가원 성적표는 학교에서 응시하는 것만 주는건줄 알고...학교에서...
-
열심히 걷고 체력단련해서 체지방 쌓인거 빨리 빼야지 ㅎㅎㅎ
-
평가원 #~#
-
얼버기 1
얼리버드... 맞나?
-
김진아 하지원 최홍라 정설아
-
영어 70후~80초중이면 문풀 강의 듣는게 나을라나요?
-
[속보] 파키스탄 "미사일 모스크에도 떨어져…아동 등 13명 사망" 5
[속보] 파키스탄 "미사일 모스크에도 떨어져…아동 등 13명 사망"
-
방음이 이정도로 안된다고? 이런적 없었는데 뭐냐
-
떨어지면 군대갔다 온 다음에 콧수염을 기르고 연설을 해봐야지...
-
07년생이고요 진로가 해양경찰(해경)인데요 그래서 한국해양대 해사법학부 또는...
-
kbs 소설부분 2
빅플릭스라 애니메이션으로 되어있는거 재밌고 이해하기도 좋아서 좋은데 잇올에서 보기...
-
괜찮게 하고 있는걸까요..? 15 22 28 30 틀렷습니다
-
갈까?
-
지금이 과거와 미래를 통합한다고 하니까 맥락을 제외하라는 건 좀 애매하지 않음?...
-
독서보다 문학에서 더 많이 까여요 쉬운것도 틀려서 체감상 더 큰 감점으로 다가오네요...
-
저 오늘 ㄹㅇ 오전부터 국어공부하는데 물론 잠이 막 솔솔와서 그런것도있지만 ㄹㅇ...
-
구구
-
기하런 ㄱㅊ나요 5
작수 12211임요 수학은 화ㅏㄷ통했늠
-
3, 4, 7, 10: 현역들만의 리그-교육청(일명 수능 마이너=3부 리그) 6,...
-
저출산 아닌듯 5
생일 존@@@@나많음
-
화학에서 넘어왔는데 원래 지금쯤이면 n제랑 브릿지 벅벅했을텐데 할게 너무 없으니...
-
28수능 수시 0
28수능 수시때 1등급이 되려면 모든 과목이 현행 9등급제중 2안으로 들어와야...
-
ㅠㅠ
-
6평 전에 ebs 꼭 다 봐야하나요?? 남은 시간동안 기출하고 간쓸개에만...
-
'핵보유국' 인도·파키스탄, 6년만에 군사충돌…서로 미사일공격(종합2보) 5
인도, 분쟁지 카슈미르 등 파키스탄 9곳에 미사일 폭격…"8명 사망" 파키스탄도...
-
그냥 오늘 글이 하나도 안 읽힌다 이런 날 수능 보면 5등급 나올 것만 같은 컨디션
-
다시들어가야지 0
아이고 수학해야함
-
수학 문제 풀었던거 2주있다 다시 풀었는데 그 풀이과정이 거진 기억이 나는데......
-
짝짝
공간도형 많이 봐주고 있는 거 같긴 해요
기하 응시자가 많이 없다보니까 기출뺑뺑이로 갈려는 거 같은데 벡터는 얘기가 다르긴 하죠 낯설기도 하고
기출소재로 내도 대가리 터질수도 있으니까..
스크랩해놓고 심심할때마다 읽어야겟음 좋은 글 감사합니당
애초에 공간 자체가 팔다리 다 잘리고 삼수선만 남은지라 상황을 꼬아내는 자체에 한계가 생기다보니 ㅜ
그래서 평벡에서 온몸 비트는 거 같긴 합니다 ㅋㅋㅋ
진짜 개처럼 개추를
벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅
[짧럼] 울트라맨 칼럼 독해법
1. 스크롤을 아래로 쭉 긁는다
2. 세 줄 요약을 읽는다
3. 스크롤을 맨 위로 올려서 요약대로 구간을 나누어 정독한다
'이번엔 두 줄'
그저 빛.. 감사합니다
기하 화이팅

기하러 좋아요 누르고 갑니다사걱세 덕분에 141129같은 흉악한 킬러로부터 수험생들이 해방되니 기쁘도다
요즘 기하 난이도가 적절히 잘 나오는 듯해요
푸는 맛이 좋아서 계속 하게 되네여
평면으로 한정된 덕에 상황 해석하는 난도가 높아진 덕분 같아요
캬 떴다
오늘 프메 영역 파트 강의 듣기 전에 문제 푸는데 앞과 다르게 진짜 모르겠어서 내가 문제 있는 건가 싶었는데 원래 난이도가 있는 파트였군요 참고 열심히 해보겠습니다
(혹시 이런 파트 잘 안 풀리면 벡터 초반 부분 기출 파트 전부 끝내고 공부하나요 아님 우선 부딪혀보나요...?)
후속 칼럼에서 짧게 언급 했으니 참고 해주세요
https://orbi.kr/00073065974/%255B%EC%B9%BC%EB%9F%BC%255D%2520%E3%80%8E%EC%98%81%EC%97%AD%EC%A0%84%EA%B0%9C%E3%80%8F%2520'%EC%96%B4%EC%A0%9C%EA%B1%B0%EB%B3%B4%EC%B6%A9'
어림도 없지 이쪽도 료이키 텐카이 무료쿠쇼!
영역대결을 해보자!◕‿◕
사실 주술회전 안 봤음
공간도형은 대체 어떻게 풀이하는 거였나요..??
1. 삼수선을 찾는다
2. 1을 잊지 않는다
기하 잘하는 사람들은 이차곡선, 처음하는 사람들은 공간도형을 어려워한다 라고들 말하는데 저는 문제를 풀면 풀수록 벡터가 제일 맵더라구요
걍 벡터가 제일 어려운게 맞음요
이차곡선은 뭐 사설에서 케이스 개꼬아서 냈을 때나 아니면 방심하고 유기하다가 빡 맞는경우거나..
다들 고이면 벡터가 제일 쉽다는데 저만 어려워하던게 아니었군요ㅜㅜ 진짜 벡터는 관점을 돌린다고 문제 노려보는 시간이 제일 길고 풀때 호흡도 길어서 힘들더라구요
이차곡선은 그냥 수1 연장선이라서 기하느낌이 제일 안나죠. 저는 개인적으로 제일 노잼이에요
공도는 기하 그 자체고...
벡터는 문제에서 내주는 조건 해석만 쭉쭉 잘 따라가면 아무리 어려운 문제라도 답을 쉽게 낼 수 있는데 그 조건 해석을 적절하게 하는 게 어려운 것 같아요. 예를 들어 벡터의 합을 누구는 내분점으로 해석하고 누구는 성분화해보고 누구는 제곱해보고 누구는 분해하거나 평행이동해서 자취로 표현해보고... 잘 안 풀리면 현T께서 말씀하신 것처럼 손절이 익절이라고 빨리 다른 방법으로 넘어가야 되는데 그게 쉽지 않죠. 미적 30은 손도못대는 경우가 많은데 기하 30은 벡터 못하는 사람이어도 조건 해석만 잘하면 5분컷 할 수 있다고 생각해요. 출제의도대로 조건 해석하는 게 힘들어서 그렇지...
공도는 진짜 팔다리 다 날아가서 어렵게 내는데 한계가 뚜렷합디다
기하러인데 너무 잘봤어요 감사합니다
기하 화이팅