수학 잘하시는분들 이런거 머리로 스케치 하시나요
게시글 주소: https://orbi.kr/00072878939
수열이라 일단 써보면서 가나요?태도 배우고싶음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제곧내 본인 87점
-
화작 검더텅 풀려고 하는데 개정 후인 22학년도부터 풀면 될까요 어디서는...
-
사탐런 질문 0
한과목 사탐런 생각하고 있는데 사문 생윤중에 어떤 과목이 더 괜찮을까요?
-
제 지인 (친구X) 은 항상 과외20분전에 무인프린트샵 가서 국어 기출시험지 하나...
-
미적분이었나 수2였나 기출이었는데 h(t)가 무슨 교점의 개수고 g(t)도 무슨...
-
수능실모에 도움되었던 실모들 추천좀 해주세요. 히든 강대x라든가
-
강사 이력 연세대 경영학과 최초합 연세대 심리학과 최초합 고려대 경제학과 최초합...
-
개체수 10000 멘델집단이니깐 총 유전자수 20000 일텐데 D:d=1:2로 합이...
-
모두 다 비닐 안뜯은 새책입니다 수1 코어앤 모어25000 수2 코어앤...
-
핵형 문제 풀 때 종 판단할 때 요즘 일부 염색체를 표시하지 않거나 미지수로 주고...
-
반수 시즌이 아니라 그런가
-
탈릅할까 말까 8
.
-
어느 정도로 공부해야 되나요? 많이 어려운가요??
-
요근래 학생들 중간고사가 끝나 과외를 많이 알아봅니다!! 과외알바를 생각하시는...
-
전에 올렸던 문제의 정답은 9입니다! [난이도 : 쉬운 4점 ~ 평이한 4점]...
-
5등급제 0
혹시 설명해주실 분... 화석이라 지금 고1 애들이 뭘 배우고 있는지 읽어봐도 잘...
-
기생집4점 점프 빼고 다 풀엇는데 다음 커리로 넘어갈지 점프 끝내고 시작할지...
-
흠흠 7
오늘 석촌호수 다녀올가 메타몽도 오늘까지내
-
풀고 어떤지 휭까점...
-
세특 관련해서 질문드려 봅니다.. "하나의 송신기에서 동일 주파수로 전송할 때,...
-
[속보]이재명 "4년 연임제 도입으로 대통령 권한 분산…국무총리는 국회서 추천" 8
제21대 대선 공식 선거운동 일주일째인 18일 더불어민주당 이재명 후보는 대통령...
-
헬스갔다 피아노 가야지 14
기분좋게 휴일을 시작하자
-
고3 (수시최저러)이라 내신시험기간이랑 세특도 있고 3모전후로 탐구과목바꾸고...
-
[속보]이재명 "감사원 국회로 이관…공수처장·검찰총장·경찰청장 국회 동의 받아야" 1
후속기사가 이어집니다
-
후속기사가 이어집니다
-
이거보고 함수로 푼 사람들은 어떻게 함수로 풀 생각을 떠올리셨나요?
-
수능까지 같이 가고싶다고 해줘서 넘 기뻐용 여기에 대단한 쌤들 많지만 ㅎㅅㅎ 한가지...
-
도야 2
훗
-
다 휴릅하면 12
여긴 내가 지배한다
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
여름방학 때 시킬건데 국어는 고등학교 공부가 처음인데 바로 강의 듣게해? 아님 고1...
-
제가 미래에 살곳이랍니다.
-
건동홍라인 공대 1학년 마치고 육군 입대했습니다. 마지막 수능은 재수때인...
-
적자들은 참고!!
-
프사 설정하고 싶은데 자꾸 파일이 크다길래 100kb까지 압축했는데도 안되네요...
-
시대인재 수과학 브릿지모의고사와 브릿지전국모의고사중에 시간없을때 둘중 하나만...
-
ㅇㅂㄱ 1
-
5.18 민주화운동 45주년 기념
-
지하철 놓침 3
ㅅㅂ
-
“좋은 기업 사서 평생 보유”… 가치투자 원칙 남기고 떠나는 전설[글로벌 포커스] 0
세계 최고의 투자자 중 한 명인 워런 버핏 미국 버크셔해서웨이 회장 겸...
-
드릴수1하사십 0
드릴 수1 정답률 90퍼정도되는데 하사십으로 넘어가도 되려나요 아님 이로운 풀고 하사십해볼까요 ㅠ
-
지하철 놓칠 뻔 2
휴
-
의대열풍으로 같이 휩쓸려서 입결이 올랐다고봄 아니면 진짜 수의사가 저만큼 메리트가있어서라고봄
-
새르비 맞팔구 4
극도록 퇴화한 레버기는 얼버기와 구분할 수 없다
-
내 눈 ㅠㅡㅠ
-
3모 13315 5모 14311 탐구 공부가 어느정도 끝나서 수학을 하고있는데...
문자로 쓴 후 안 되면
직접대입해서 관찰
수열파트는 항상 이렇게함
문자로 둔다는게 일반항처럼 미지수 설정 말하시는건가
답 7인가요
암산뭐임
땡땡
24인가
머리로 하니까 잘 안되넹
맞음 근데 머리로 어케함 시팔??
24?
나조건 해석한 뒤에는 걍 귀납적추론때림

아니..진짜 뭐임 벽이다 벽정보가 많은 항부터 출발하는 게 맞는데
얜 딱히 가 조건으로 만들어낼게 없어보이니
나 조건 보고 a_1 k로 임의 지정하기 ㅋㅋ
지리네요..
이창무 쌤 심화특강도 한번 들어보셔요ㅋㅋ
수열푸는거보면 지림 ㅋㅋ
전 그정도 레벨 하지도 못할듯 ㅋㅋㅋㅋ
진짜 이런건 그냥 손도 못대겠네
(가)조건을 보고 4항부터 들어가서 역추적을 해볼까 하고 봤을 때 부호땜에 굉장히 귀찮아질거라는 게 예감이 됨+합과 항의 관계가 매우 특수
-> 정추적으로 규칙 파악
(가) (나)를 만족하려면
-32 16 8 4 2 1 1/2 ••••••
-32 -16 -8 -4 -2 -1 -1/2 ••••••
이런 느낌인가
a4+ a6 보고 4+1 생각남
암산 불가능하진 않은 듯요
24?
그냥 읽고 아 점점 작아져야지 절댓값을 만족하겠네
생각하고 풂요

부럽다sn=an or sn=-an sn=0이 아니니까 n>=2에선 2sn=sn-1이겠구나하고 쓰윽 풀것같네요
(나)보고 a[1] < 0, n ≥ 2에선 a[n]이 공비 1/2인 등비급수인 거 알아챈 다음에
(가)보고 a[4] = 4, a[6] = 1 박은 뒤 |a[1] + a[3]| = |(-32) + 8| = 24 이렇게 풀은 듯

지립니다이진법 떠오름
뭔가 1 -0.5 -0.25.... 넣고 싶게 생겼음
배율 조정하고

벽이다 벽an sn 같이 주어졌고 sn을 an에 대해 나타내자니 나 조건의 절댓값이 거슬림->an+1 을 sn+1 - sn 으로 나타내서 풀되, an에 대해 주어진 모든 조건들을 sn에 대해 바꿔서 풀면 끝
암산 24
x축 그어놓고 a1부터 어디쯤 위치해야 야무질지 대가리 열심히 굴리면됨
걍 |S[n]|=|an[]|=|S[n]-S[n-1]| 인데 S[n-1]=/0이니 S[n]=/S[n-1] 이므로 서로 부호 다르다는걸 이용해서 식계산할듯
윗분들보면 고능하게 잘 푸시는데
그냥 정석적으로 an=sn-sn-1로 바꾸고 규칙파악한다음
a4혹은 a6를 미지수로 잡는다 해서 가 조건을 풀 수 있는게 아니라는걸 파악하고 a1을 미지수로 잡아야겠다 생각하고 계산몇번하면 해결 할 수 있을 듯요
1.Sn an관계식섞여있을땐
an을 Sn-Sn-1로 바꾸는게 유리하다
2.주어진 항 간 관계식에서 어느하나를 미지수로 잡아 해결할 수 있는 지 확인 -> 안되면 정추적/역추적 방향 결정하기
이정도로 생각하시면 좋지 않을까요..?
저도 그리 잘하는편은 아니라..ㅎㅎ
감사합니다!
문제 좋네요
배울점이 있는 문제인듯
뒷북해설 해드리자면
1. 구하는 값을 본다 -> 수열의 특정항 -> 수열의 정의가 궁금하다
2. 조건을 보니 (가)조건이 '특수'한 트리거고 (나)조건이 수열의 '일반'적 정의이다. (나)를 해석하고 (가)를 (나)에 먹이는 방향으로 잡는다
3. (나)조건 해석을 시도한다. 뭔가가 같지 않다는 조건과 뭔가가 같다는 조건이 있다. 수능 문제는 하나의 정답을 구해야 한다. 그렇기에 등식이 중요하다. 등호가 없는 부등호나 같지않다의 경우는 실수의 '연속적인' 후보들 중에서 딱 하나의 답을 특정해주지 못한다. 따라서 '이산적인' 케이스를 배제하는 근거가 되는 것이 유일한 역할이다. 그렇기에 등호가 없는 부등호가 부등식이 나오는 경우 '케이스'에 염두를 둔다.
그러고 보니 오른쪽 등식에 절댓값이 있다. 절댓값이 있는 경우 취해야 할 몇가지 필연적인 태도들 중 하나는 케이스를 나누는 것이다. 같지않다 조건이 뭔가 케이스를 지워주지 않을까 하는 생각을 갖고 절댓값 조건을 바라볼 수 있다.
그리고 Sn과 an의 관계식이 있는데, 웬만하면 둘 중 하나로 통일시키는 것이 좋다. 우변을 Sn–Sn-1로 바꾸고 싶다. 그 전에, n=1의 경우 아무런 정보를 주지 못하므로 등식의 성립범위를 n>=2로 제한해도 동치이다. 그리고 케이스를 나누면, n>=2에 대해 Sn-1=0 혹은 Sn=1/2Sn-1인데, 전자의 경우 왼쪽의 같지않다 조건에 의해 깔끔하게 지워진다. 분류기준을 놓치지 않는 상태로, Sn이 등비수열이니 귀납적 정의를 일반항으로 바꿀 수 있고, Sn의 일반적 정의를 알고 있으니 an의 일반항도 구할 수 있다.
4. 이제 해석한 정보에 트리거 역할인 (가)를 집어넣으면 모든 항이 결정되고 구해야 하는 값도 구할 수 있음
뒷북해설이라 작위적이긴 한데 제가 강사입장이라면 이렇게 해설했을듯
자세한 풀이 감사합니다 다시 풀어볼게요 ㅎㅎ