현수능의 고1 수학적 요소 [1편]
게시글 주소: https://orbi.kr/00072812017
현 수능에 있는 고1 수학적 요소에 대해 알아볼게요.
1. 완전제곱식
소소한 팁부터 시작하겠습니다.
완전제곱식을 잘 써먹으면 계산량을 줄일 수 있습니다.
단편적인 예시로,
이차함수와 직선이 접하는 상황은 대부분 미분을 할 필요가 없습니다.
교과서에서는 이런 문제를 미분하라고 시키지만 사실 그럴 필요가 없죠.
두 식을 빼서
이걸 만든 뒤에,
이렇게 결론내주면 됩니다.
판별식 쓰지말고,
두 완전제곱식의 꼴이 익숙하면 계산이 편하겠죠.
대체로는 계산을 깔끔하게 하기 위해 이렇게 딱 떨어지는 숫자를 줍니다.
만약 떨어지지 않는다면 판별식 쓰면 되는 것이구요.
한 발 더 나아가서
이 문제처럼
인 m을 구할 때에도,
이 꼴이 익숙하다면 계산 없이 m=-12를 도출할 수 있습니다.
사실 이건 외워야한다기보단, 고1 수학 계산 짬바에서 나오는 것 같습니다.
여기까진 말 그대로 소소한 팁이었구요
이제 본격적인 내용으로 가볼게요.
이 경우와 같이
이차함수와 이차함수가 접할 때도, 한쪽으로 몰아서 판별식 쓰면 됩니다.
당연히 완전제곱꼴로 읽어도 되는데, 이 경우에는 그게 잘 보이지 않죠.
핵심은, 점 잡고 미분할 필요 없습니다.
그렇게 힘들게 구한 결과나, 한쪽으로 몰아서 판별식 쓴 결과나
완전히 동일하게 나옵니다.
만약 두 계산 방식에서 다른 결과가 나온다면 그건 a,b가 완전히 정해져버린다는 소리인데
(왜냐면 식 두개, 문자 두개니까요)
말이 안 되죠.
보라색으로 표시해둔 부분이 제가 개인적으로 자주 하는 생각입니다.
문제를 생각 없이 풀다 보면
'어? 이게 왜 같은 결과가 나오지? 왜 항등식이 나오지?'
혹은
'지금 이걸 계산하는게 의미가 있나?'
와 같은 생각이 들 때가 있는데, 그때 보라색으로 쓴 생각을 해보세요.
그 계산이 의미있는 계산인지, 없는 계산인지 판단할 수 있습니다.
다음 내용으로 넘어갈게요.
혹시 근의 공식 유도 과정을 아시나요?
제가 여기서 공식 유도를 하면 너무 재미가 없으니까,
대충 컨셉만 알려드릴게요.
아이디어는 "억지로 완전제곱식을 만든다"입니다.
그러니까
이렇게 생긴 이차식에다가, 적절한 상수항을 더했다가 빼서 억지로 완전제곱식 하나를 만드는 겁니다.
그 결과를 정리한 게 근의 공식이에요.
저는 이것도 소소한 계산 팁으로 사용하는데,
때론 근공보다 이게 빠르더라구요. 보여드릴게요
이렇게 주어졌을 때,
이렇게 정리하는 겁니다.
근공의 결과가 아니라 과정을 쓰는거죠.
이처럼 적절한 상수를 더하는 아이디어가 실제 문제에서도 활용됩니다.
관련된 기출문제를 하나 보여드릴게요.
2023시행 6월 모의고사입니다.
저는 이 문제의 (가) 조건을 보자마자 양변에 1을 더했습니다.
그럼 왼쪽에 f(x)+1의 제곱이라는 완전제곱식이 나오니까요.
완전제곱식은 많은 정보를 포함하고 있습니다.
그 중 가장 결정적인 건 항상 0이상이다라는 점입니다.
왼쪽이 0이상이면 오른쪽도 0이상의 함숫값을 가지겠죠.
참고로 (나)를 풀면 f가 함숫값으로 -1을 적어도 한 번은 가진다는 결과가 나와요.
따로 확인하지 마시고 그냥 저 믿으면서(?) 따라오세요.
f가 -1인 순간이 있다면,
얘가 적어도 한 번은 0이 된다는 거죠. 그럼 (가)의 우변에 1을 더한
얘도 적어도 한 번은 0이 돼야 하며, 동시에 항상 0 이상이어야 합니다.
미분가능한 함수이므로 x축에 접한다는 소리죠.
여기서 또 한 번 센스를 발휘해서
얘가 x축에 접한다는 계산을 해주면, a와 b가 구해집니다.
그 계산도 좀 센스 있게 할 수 있는데, 댓글에 묻는 분이 있으면 써둘게요.
저말고도 이렇게 1을 더하면서 풀이를 시작하신 분들이 많이 있었는데,
사실 당시에 "1 더하기"가 작지만 논란 아닌 논란이 있었습니다.
뭐였냐면 1을 더하는게 너무 발상적이라는 겁니다.
그래서 그 대안으로 제시된 풀이가 근의 공식을 쓰는 것이었어요.
f를 문자처럼 생각해서 근의 공식을 쓰면, f(x)= ~~~ 가 나오니까요.
하지만 여러분은 이제 근의 공식의 유도 아이디어를 알았으니까, 이게 상당히 웃픈(?) 말이라는 걸 알 수 있겠죠.
1을 더하는거나 근의 공식을 쓰는거나 똑같은 겁니다. 근공은 1을 더하는 과정을 포함하고 있습니다.
아무튼 결론은 이 문제처럼, 우리는 적절하게 상수를 더하는 법도 사용할 수 있어야 합니다.
완전제곱식을 만들어서, 그 특징을 잘 이용할 수 있게끔 말입니다.
한편 또 다른 방식으로도 완전제곱식이 사용됩니다.
그건 사차함수의 공통접선을 구할 때입니다.
이런 사차함수의 공통접선(이중접선)을 구해야 하는 상황입니다.
이때 계산 없이,
y=2x-8이라고 알 수 있습니다.
그 이유는 두 식을 빼보면 알 수 있는데요,
x 제곱에 대한 완전제곱식이 되기 때문입니다.
이에 대해서는 이미 자세히 써둔 칼럼이 있습니다.
아래 링크를 누르면 넘어가집니다.
근데 글 거의 다 끝났으니까 끝까지 보고나서, (좋아요도 누르고 나서 ㅎㅎ) 넘어가세요.
2년전 글이네요.
지금 제가 성숙하단 뜻은 아니지만, 저 글이 다소 어릴 때 쓴거라 좀 싸가지가 없습니다.
감안하고 봐주시면 감사하겠습니다...ㅋㅋ ㅜ
아무튼
1. 완전제곱식은 이정도로 마치겠습니다.
다방면에서 완전제곱식이 사용된다고 요약할 수 있겠네요.
시작은 좀 가볍게 해봤습니다.
앞으로 고1 수학에 대해 할 얘기가 많은데
- 식변환 (수학 상에서 아이디어를 차용한)
- 평행이동의 활용
- 이차함수 감각과 대칭성
- 근의 분리
- 확대와 축소
등입니다.
곧 돌아오겠습니다
감사합니다
#무민
0 XDK (+5,030)
-
5,020
-
10
-
얼마전까지 3%정도아니였나 이거 노무현급인데 ㄹㅇ 동탄에서도그렇고 이번에도 이길려나
-
확실히 민주주의로는 안됨 자유민주주의 시장경제는 100년안에 체제경쟁에서 패배하고...
-
노조미 탑승 2
패스 뽕뽑기
-
김범준 스블 풀 때 11
너무 어려워서 안풀리는 문제가 좀 많은데 강의 먼저 듣고 풀어보고 나중에 시간 좀...
-
https://www.hankyung.com/article/202305247584i...
-
모닝X스 완료 3
유산소도 하고 개운하네 샤워해야지
-
5 첫장만 1~4 나머진 5~15까지.. 23기출인데 공통 11부터. 풀줄...
-
이시발
-
맛있겠다
-
"한덕수가 가장 근접"...대선 양자대결, 이재명 누구와 붙어도 50%↑ 11
윤석열 전 대통령의 파면으로 열리는 조기대선에서 이재명 전 더불어민주당 대표가...
-
뭐지 존나 아픔
-
로맨스 제외. 양산형도 괜찮음. 오프라인으로 살 수 있는걸로
-
음운변동 0
미쳐버리겠다 문제 푸는데 너무 오래걸려서 스트레스
-
얼버기 12
밤인가봐요 어둑어둑하네요
-
저능 2
아직도 외분점 내분점 공식 나오면 어디서 어디까지가 몇대몇인지 몰르겠음
-
파운데이션 확통 0
파운데이션 확통 교재는 없나요?? 강의만 듣는 건가요??
-
[자작시] 자습 0
-
기출풀고 채점할때 저는 이론윤리학으로 알았지만 규범윤리학인 경우가 있는데 그냥...
-
키 185 몸무게 90에서 체지방량이 1자리수...골격근량이 그냥 ㄷㄷ하네요
-
바닷가재 수확 마늘로요? 바다 가자 서해 머네요로?
-
부산대 삼반수 5
부산대 낮공인데 삼반수 어느라인부터 성공임??
-
확통질문 0
확통 김기현쌤 아이디어로 시작하는데 순열 조합 부분이 완숙은 아니에요. 얼추...
-
그래도 좋은 시선으로 봐주세요
-
g(α)<0인거 왜 있는거임 내가 모르는 g(α)≥0인 극소가 있나 없었던 것...
-
대가리가 나빠서 그런지 먼 개같은 분수밖에 안 나와여...
-
진짜 모름
-
비추인가요??
-
공벡으로 풀기 15
역시 매번 느끼는건데 수직조건은 공벡으로 보는게 상당히 괜찮음 혹시해서 써봣는데 괜찮네
-
모닝똥을 브와악 4
으어 시원하노
-
진짜 모름
-
물리 출튀 슈웃 6
-
비흡연자 애인 얼굴에 담배ㅜ연기 뱉기 ㅋㅋ
-
푸리 2
굿
-
현재까지도 이견 거의 없이 미국의 가장 위대한 대통령으로 칭송받는 에이브러햄 링컨...
-
현실에선 똘똘함니다 그래도
-
이지영 2
복습 교제 따라가는 게 나을까요 vs 기출 (ex.기시감) 하는 게 좋을까요.....
-
사탐 선택 고민 7
재수생 - 메디컬 목표냐하기엔 곰곰이 생각해보니 좀 아닌 것 같고 무ㅓ그래도 문은...
-
아점 ㅇㅈ 4
6000원
-
점심 먹을 친구 없어서 삼김먹는중 ㅜㅜ
-
다 수업시간엔 오르비 안하는 실수들이었어..
-
원래 시험 당일에 알 수 있는 거 아니었나요??? 신기
-
꾸준글 써봐야지 우리학교 많이 사랑해주세요
-
22 31 32 34 36 37 38 39 이렇게 틀렸는데 하...뭐가 문제지
-
나진짜힘들어ㅓㅡ 9
안아주먄안돼?
-
난해한 시만 올리는 이상병걸린 고3 ㅋㅋㅋㅋ
-
원광대랑 단국대만 지랄이였던거네 ㅋㅋ 미친 쟤내 둘말곤 거의 그대롱데
-
자작시-중압 0
좀만 다듬으면 더 좋을거 같은데 그냥 올려봐요
-
[단독]서울대 교수회 “수능 1년에 3, 4번” 교육개혁안 첫 제안 3
서울대 교수회가 학과의 경계가 없는 무전공 선발을 확대하고 지방거점국립대와...
-
심찬우 선생님 듣고 있어서 ebs는 다른 강사분 들을려고 하는데 ovs가 제일...
-
영어 지문 5회독씩 다 돌렸고, 이제 문제를 풀어야하는데,, 저랑 진짜 잘 맞던...
개추
고1 수학 칼럼 좋다
개추

눈물을흘리며개추개추
개추

이야 개추오와 저 완전제곱식 계산 현우진쌤 보고 배웠는데 여기서도 보네용
https://orbi.kr/00064989284/%EA%B7%B8%EB]
그동안 올린 모든 칼럼은 여기서 확인하실 수 있습니다.
a와 b를 구하는 센스있는 계산이 궁금합니다요....
ㅇㄷ
낭낭 ~
24년 6월 29번처럼 모양만 미적이고 99% 고1수학 문제가 나오기도 하는ㅋㅋㅋ
맛있어요