[칼럼] 부정적분은 적분이 아니다
게시글 주소: https://orbi.kr/00072697375
안녕하세요 :)
이번 칼럼에서는 부정적분에 대해 다뤄볼게요.
적분 개념을 정확히 알고 있는 학생이 생각보다 많지 않더라고요.
공부를 잘하는 학생이라면 쉬울 수도 있지만,
이 글을 통해 적분의 개념을 확실히 정리해 보세요!
1. 정적분은 왜 하는가?
정적분은 고대 이집트 사람들이 만들었습니다.
이집트에서는 나일강이 주기적으로 범람했어요.
덕분에 땅이 비옥해져 농사가 잘됐지만,
홍수가 지나갈 때마다 땅의 경계가 사라지는 문제가 생겼죠.
“깃발을 꽂아놨는데 홍수에 다 쓸려나갔네...
내 땅이 어디까지였더라?”
이집트 농부들은 이 문제를 수학적으로 풀려고 했습니다.
구불구불하고 불규칙적인 땅의 넓이를 정확히 재는 거죠.
(사진은 나무위키에서 가져왔습니다.)
구불구불한 넓이를 정확히 재기 위해서,
사람들은 면적을 잘게 쪼개서 더했어요.
작은 직사각형을 만들고, 넓이를 다 더하면,
구불구불한 넓이를 구할 수 있지 않을까?
정적분은 이런 생각에서 출발했습니다.
지금은 고대 유물이 되어 버린 공식입니다.
정적분의 정의에요. 교과서에 있는 거랑은 다르죠?
지금은 교육과정에서 빠졌기 때문에 자세히 공부할 필요는 없습니다.
무슨 의미인지 간단히 알아봅시다.
극한 lim은 작은 직사각형이 무수히 많다는 것을 뜻합니다.
시그마 기호는 직사각형 넓이를 더한다는 뜻이고요.
시그마 안쪽 은 직사각형의 넓이입니다.
즉,
작은 직사각형을 만들고, 넓이를 다 더하면,
구불구불한 넓이를 구할 수 있지 않을까?
라는 게 정적분인 거죠.
2. 미분은 왜 하는가?
(설명의 편의를 위해 뉴턴 미분법만 다룹니다.)
떨어지는 사과를 보면서 만유인력을 발견한 뉴턴,
하지만 뉴턴씨는 큰 문제를 마주하게 됩니다.
사과를 너무 많이 먹어서 질려버린 것이죠.
심심해진 뉴턴은 다른 의문을 품었습니다.
'떨어지는 사과의 속도를 구할 순 없을까?'
예를 들어,
서울에서 부산까지 500km를 5시간 만에 갔다면,
평균 속력은 100km/h입니다.
그런데 실제로는 브레이크도 밟고, 신호도 서고, 좌회전도 하잖아요?
미분은 자동차가 대전톨게이트를 지나는 순간의 속도를 구하는 겁니다.
매우매우 러프하게 말하면,
미분은 순간 속도를 구하기 위해 하는 거에요.
이 속도를 구하려다 보니 기울기가 나오고, 순간변화율이 나오는 거죠.
3. 미적분의 기본정리
위 내용을 다시 정리해볼게요.
적분은 구불구불한 땅 넓이를 구하는 겁니다.
미분은 자동차의 순간 속도를 구하는 겁니다.
이 녀석들, 대체 무슨 상관이 있을까요?
부동산이랑 속도계가 과연 연관이 있을까요?
원래 미분과 적분은 전혀 관련이 없습니다.
전혀 관련없는 두 분야는,
미적분의 기본정리라는 위대한 공식에 의해 연결되었습니다.
교과서에는 이 공식이 '정적분의 정의'라고 나와 있습니다.
거짓말입니다. 정적분의 정의 아니에요.
이건 미적분의 기본정리입니다.
왼쪽은 정적분 값입니다. 즉 f(x)의 넓이에요.
오른쪽에 있는 함수 F(x)는 f(x)에서 역미분을 해준 녀석입니다.
저는 부정적분이라는 용어를 좋아하지 않습니다.
학생들이 부정적분과 정적분을 헷갈리는 큰 이유는,
부정적분이라는 이상한 용어를 쓰기 때문이에요.
저는 역미분이라는 용어를 대신 씁니다.
흔히 미분 거꾸로 하면 부정적분이라고 하는데요,
부정적분은 원래 정적분이랑 관련이 없습니다.
정적분은 넓이를 구하는 거, 부정적분은 미분 거꾸로 한 거!
전혀 다른 적분과 미분이라는 분야는
수학 역사상 가장 중요한 미적분의 기본정리에 의해 연결되었고,
그래서 우리는 적분과 미분을 엮어서 배우는 겁니다.
이 정리가 얼마나 위대한지 체감이 안 간다면,
복잡한 경제학 문제를
쉬운 지구과학 공식으로 푼다고 생각해보세요.
뉴턴은 이런 대단한 일을 해낸 거죠.
4. 이게 왜 중요한데
여기까지 읽었다면 이런 생각이 들 거에요.
'선생, 누구나 다 아는 거 아니오?'
미적분의 기본정리를 학교에서 중요하게 가르치기 때문에,
학생들은 정적분과 역미분(부정적분)을 헷갈리기 쉽습니다.
정적분은 기본적으로 넓이입니다.
즉 정적분을 하면 숫자가 나옵니다.
반대로 역미분을 하면 함수가 나옵니다.
문제 풀 때 이 부분을 헷갈리기 쉽습니다.
다시 한 번 강조하겠습니다.
정적분을 하면 숫자가 나오고,
역미분(부정적분)을 하면 함수가 나옵니다.
5. 더 복잡해지는...
강조했듯, 정적분을 하면 숫자가 나옵니다.
하지만 수학자 놈들은 언제나 더 복잡한 것을 만들죠.
흔히 보는 정적분으로 정의된 함수입니다.
어라, 아까 분명히 정적분은 숫자라고 했는데...
정적분은 기본적으로 숫자이지만,
적분구간에 문자 x가 있어서 함수가 나옵니다.
이게 뭔 소리냐고요?
정적분으로 정의된 함수에 대해서는 다음 칼럼에서 다뤄보겠습니다.
<정리>
오늘의 결론입니다.
정적분을 하면 숫자가 나오고,
역미분(부정적분)을 하면 함수가 나옵니다.
헷갈리지 않도록 조심합시다!
궁금한 점 있으시면 댓글 달아주시면 성심껏 답변드릴게요!
부족한 글 끝까지 읽어주셔서 감사합니다!
도움이 되셨다면 좋아요, 댓글 부탁드립니다 :)
수학 칼럼)
실수를 줄이는 현실적 방법 https://orbi.kr/00072183669
모의고사 당일에 '무조건' 복기하세요 https://orbi.kr/00072575369
계산실수가 많다면 버려야 할 습관 https://orbi.kr/00072173494
진도가 늦어서 불안할 때 https://orbi.kr/00072313784
체계적으로 문제 읽기 1 https://orbi.kr/00072237485
체계적으로 문제 읽기 2 https://orbi.kr/00072300008
극한상쇄 (231114) https://orbi.kr/00072371992
3모 공통 총평 + 14, 15 해설 https://orbi.kr/00072624661
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 안녕히주무세요 24
-
게이글쓰는걸로 맨날까이고 저격 당했는대 무시하고 꾸준히 쓰는거보면 사실 강철멘탈일수도 행복해라
-
그 숫자가 워낙 많아서 생지는 표본이 심각해지지는 않음
-
흠
-
대충 연고공~약수 정도 나오지 않을까 잘하면 지방의?
-
웬만하면 다 친하게 지내고 싶다
-
부활해라 게이야
-
작년 현역 3모 58에서 올해 3모 80 나옴 근데 미적은 해도 해도 는다는 느낌이 안 듦
-
이거들어바 14
굿
-
아무리 그래도 비서울 비대구에서는 아직도 무지성 생지가 많은데
-
캬캬캬 251130 해설 ㄱㄱㄱ
-
아 메타 안도니 15
괜히했노.
-
심지어 가난하기까지
-
안녕하세요호잇저는저능부엉이티비에저능부엉이입니다 어디감? 반수한다고 하지 않앗나
-
안녕하세용 4
늦은 인사 드려용
-
어떤지 아는법 잇나
-
근데 재릅하실려나
-
옯스타 홍보함 0
@cheri_tokki
-
디엠 나눴습니다 11
걱정하지는 않으셔도 될것 같습니다. 항상 현생 응원합니다 선생님
-
예전에 사람들 인증하면 댓글 20개는 달렸던거같은데
-
벌써 거의 도착이란말이지 으흐흐
-
ㅇㅈ 9
입술에 왜케 생기가 업지
-
이새기 편하게 대해주니까 사용자가 친구같지?
-
엔제게임 수2를 끝내다 15주차 복습을 하다
-
원서를 군당 2개씩 쓸 수 있다고 하면 어떨 것 같음?? 빵꾸/펑크를 없앨 수...
-
2년만에 인증한다 15
이게 벌써 2년전이노.
-
괜히 불안함
-
조의금은 여기로 보내주세요.
-
수학 선택과목이랑 과탐 뭐 할지 추천받습니다. 참고로 작년에는 외우는게 너무 싫어서...
-
방금 많이 충격받음
-
야발
-
ㅇㅈ메타임? 3
오늘하면 역겹다고 저격먹을 삘이군
-
현돌 문제집 0
보통 킬쿼모는 6월 이후에 하나욥…? 제가 잘 몰라서… 생윤 개념 잡힌 현역이...
-
ㅇㅈ메타할거면 1
나 자기 전에… 얼른…
-
제목이 상당히 긴데..분량이 많지는 않아요. 아직 미완인 부분 제외하고 35쪽정도...
-
ㅇ?
-
이거 난이도 어떰 객관적으로?? 함수 개수 문제중에 나름 역대급 같은데 왤캐 정답률...
-
플리 인증 6
옛날플리고 잘 안써서 곡이 적음
-
수고하셨습니다 8
안녕히 주무세요
-
스트릿이라 해야하나 그런 느낌을 원함
-
걍 일하고 과외준비하고 과외하고 하루정도 방에혼자있는 개인용으로 쓰는시간 잡으면 걍...
-
남들이 n수 힘들다는디 걍 난 학교 안가고 좋은거같은데ㅋㅋ 술마시고 노는거 이런거 안좋아하긴함
-
그런 의미에서 ✨명반 홍보✨
-
어제는 이름에게 듣다가 졸라 슬퍼져서 갖자기 눈물이 남요… 저번주에는 도경수 노래 듣다가 울었어요…
-
ㅇㅇ 와서 확인한다 맞팔은 안해준다
-
국어랑 수학 풀때 들음
-
메가 구독패스 0
다시 팔까요..? 미루다 못삼,..ㅠ
-
지가 듣고 싶은 말 들으려고 몸비트는게 너무 괘씸함 가뜩이나 입시경쟁에서 한번씩...
아쎄이 역미분 실시.
좋아요 눌럿읍니다
헉
<정리>
오늘의 결론입니다.
정적분을 하면 숫자가 나오고,
역미분(부정적분)을 하면 함수가 나옵니다.
헷갈리지 않도록 조심합시다!
---------------------------------------------------
위 부분에서
'부정적분을 하다'라는 표현은 약간 문제가 있어요
부정적분은 엄밀하게 말하자면 일종의 '집합'이니까요(역도함수의 집합)
부정적분은 미분의 역연산이 아니라
어떤 함수의 모든 역도함수의 집합을 뜻합니다
여담이지만
우리나라 고등 교육과정은 적분을 너무 어거지로 가르친다고 생각해요...
연산 자체도 부정적분이라고 하지 않나요
물론 한 단어를 두 가지 의미로 쓰는게 좋아보이진 않지만...
아니요, 일상적으로 학생들에게 설명할 때는 그렇게 말하기도 하나
'부정적분'(indefinite integral)은 학문적으로는 특정 함수의 모든 역도함수의 모임(family of all antiderivatives of f)을 의미해요
찾아보니 indefinite integration에 대응되는 용어는 따로 없었네요
네
그래서 그냥 '원시함수를 찾는다', 'Finding the antiderivative'이라고 하죠
헉
적분상수를 고려하면 현월님께서 정확한 지적을 해 주셨네요 :)
사실 이 칼럼은 설명을 위해 엄밀함을 조금 희생했습니다.
'정적분은 넓이이다'는 말도, 대학에서 배우다 보면 예외가 막 튀어나오죠...
정적분 기호에 있는 dx도 숫자인데 숫자가 아니지만 계산은 되는 이상한 놈이고...
이 부분은 감안해 주시면 감사하겠습니다 :)
+) 적분을 어거지로 가르친다는 부분 너무 공감합니다.
저는 정적분의 정의를 교육과정에서 뺀 결정, 정말 잘못됐다고 생각해요.
수능 수학 공부하면서 딱히 신경쓸 필요 없는 부분이기는 하지요
보충 설명 감사해요

사실 정적분의 ‘진짜’ 정의는 저것도 아니고...이거라는 사실
이게 르벡 적분이었나요? ㅋㅋㅋㅋ
예과때 배웠던 것 같은데 오랜만이네요
그걸 예과때? ㄷㄷㄷㄷ
정확히 언제 배웠는지는 기억이 안납니다... 만
디리클레 함수 같은 거 차력쇼 하면서 적분하는 게 인상깊었어요
예과 때 뭐하다가 배우셨어요??
저도 정확히 언젠지는 기억이 안나네요 ㅎㅎ..
학교 강의는 아니었던거 같습니다