현수능의 고1 수학적 요소 [1편]
게시글 주소: https://orbi.kr/00072812017
현 수능에 있는 고1 수학적 요소에 대해 알아볼게요.
1. 완전제곱식
소소한 팁부터 시작하겠습니다.
완전제곱식을 잘 써먹으면 계산량을 줄일 수 있습니다.
단편적인 예시로,
이차함수와 직선이 접하는 상황은 대부분 미분을 할 필요가 없습니다.

교과서에서는 이런 문제를 미분하라고 시키지만 사실 그럴 필요가 없죠.
두 식을 빼서

이걸 만든 뒤에,

이렇게 결론내주면 됩니다.
판별식 쓰지말고,

두 완전제곱식의 꼴이 익숙하면 계산이 편하겠죠.
대체로는 계산을 깔끔하게 하기 위해 이렇게 딱 떨어지는 숫자를 줍니다.
만약 떨어지지 않는다면 판별식 쓰면 되는 것이구요.
한 발 더 나아가서

이 문제처럼 
인 m을 구할 때에도, 
이 꼴이 익숙하다면 계산 없이 m=-12를 도출할 수 있습니다.
사실 이건 외워야한다기보단, 고1 수학 계산 짬바에서 나오는 것 같습니다.
여기까진 말 그대로 소소한 팁이었구요
이제 본격적인 내용으로 가볼게요.

이 경우와 같이
이차함수와 이차함수가 접할 때도, 한쪽으로 몰아서 판별식 쓰면 됩니다.
당연히 완전제곱꼴로 읽어도 되는데, 이 경우에는 그게 잘 보이지 않죠.
핵심은, 점 잡고 미분할 필요 없습니다.
그렇게 힘들게 구한 결과나, 한쪽으로 몰아서 판별식 쓴 결과나
완전히 동일하게 나옵니다.
만약 두 계산 방식에서 다른 결과가 나온다면 그건 a,b가 완전히 정해져버린다는 소리인데
(왜냐면 식 두개, 문자 두개니까요)
말이 안 되죠.
보라색으로 표시해둔 부분이 제가 개인적으로 자주 하는 생각입니다.
문제를 생각 없이 풀다 보면
'어? 이게 왜 같은 결과가 나오지? 왜 항등식이 나오지?'
혹은
'지금 이걸 계산하는게 의미가 있나?'
와 같은 생각이 들 때가 있는데, 그때 보라색으로 쓴 생각을 해보세요.
그 계산이 의미있는 계산인지, 없는 계산인지 판단할 수 있습니다.
다음 내용으로 넘어갈게요.
혹시 근의 공식 유도 과정을 아시나요?
제가 여기서 공식 유도를 하면 너무 재미가 없으니까,
대충 컨셉만 알려드릴게요.
아이디어는 "억지로 완전제곱식을 만든다"입니다.
그러니까

이렇게 생긴 이차식에다가, 적절한 상수항을 더했다가 빼서 억지로 완전제곱식 하나를 만드는 겁니다.
그 결과를 정리한 게 근의 공식이에요.
저는 이것도 소소한 계산 팁으로 사용하는데,
때론 근공보다 이게 빠르더라구요. 보여드릴게요

이렇게 주어졌을 때,

이렇게 정리하는 겁니다.
근공의 결과가 아니라 과정을 쓰는거죠.
이처럼 적절한 상수를 더하는 아이디어가 실제 문제에서도 활용됩니다.
관련된 기출문제를 하나 보여드릴게요.

2023시행 6월 모의고사입니다.
저는 이 문제의 (가) 조건을 보자마자 양변에 1을 더했습니다.
그럼 왼쪽에 f(x)+1의 제곱이라는 완전제곱식이 나오니까요.
완전제곱식은 많은 정보를 포함하고 있습니다.
그 중 가장 결정적인 건 항상 0이상이다라는 점입니다.
왼쪽이 0이상이면 오른쪽도 0이상의 함숫값을 가지겠죠.
참고로 (나)를 풀면 f가 함숫값으로 -1을 적어도 한 번은 가진다는 결과가 나와요.
따로 확인하지 마시고 그냥 저 믿으면서(?) 따라오세요.
f가 -1인 순간이 있다면,

얘가 적어도 한 번은 0이 된다는 거죠. 그럼 (가)의 우변에 1을 더한

얘도 적어도 한 번은 0이 돼야 하며, 동시에 항상 0 이상이어야 합니다.
미분가능한 함수이므로 x축에 접한다는 소리죠.
여기서 또 한 번 센스를 발휘해서

얘가 x축에 접한다는 계산을 해주면, a와 b가 구해집니다.
그 계산도 좀 센스 있게 할 수 있는데, 댓글에 묻는 분이 있으면 써둘게요.
저말고도 이렇게 1을 더하면서 풀이를 시작하신 분들이 많이 있었는데,
사실 당시에 "1 더하기"가 작지만 논란 아닌 논란이 있었습니다.
뭐였냐면 1을 더하는게 너무 발상적이라는 겁니다.
그래서 그 대안으로 제시된 풀이가 근의 공식을 쓰는 것이었어요.
f를 문자처럼 생각해서 근의 공식을 쓰면, f(x)= ~~~ 가 나오니까요.
하지만 여러분은 이제 근의 공식의 유도 아이디어를 알았으니까, 이게 상당히 웃픈(?) 말이라는 걸 알 수 있겠죠.
1을 더하는거나 근의 공식을 쓰는거나 똑같은 겁니다. 근공은 1을 더하는 과정을 포함하고 있습니다.
아무튼 결론은 이 문제처럼, 우리는 적절하게 상수를 더하는 법도 사용할 수 있어야 합니다.
완전제곱식을 만들어서, 그 특징을 잘 이용할 수 있게끔 말입니다.
한편 또 다른 방식으로도 완전제곱식이 사용됩니다.
그건 사차함수의 공통접선을 구할 때입니다.

이런 사차함수의 공통접선(이중접선)을 구해야 하는 상황입니다.
이때 계산 없이,

y=2x-8이라고 알 수 있습니다.
그 이유는 두 식을 빼보면 알 수 있는데요,

x 제곱에 대한 완전제곱식이 되기 때문입니다.
이에 대해서는 이미 자세히 써둔 칼럼이 있습니다.
아래 링크를 누르면 넘어가집니다.
근데 글 거의 다 끝났으니까 끝까지 보고나서, (좋아요도 누르고 나서 ㅎㅎ) 넘어가세요.
2년전 글이네요.
지금 제가 성숙하단 뜻은 아니지만, 저 글이 다소 어릴 때 쓴거라 좀 싸가지가 없습니다.
감안하고 봐주시면 감사하겠습니다...ㅋㅋ ㅜ
아무튼
1. 완전제곱식은 이정도로 마치겠습니다.
다방면에서 완전제곱식이 사용된다고 요약할 수 있겠네요.
시작은 좀 가볍게 해봤습니다.
앞으로 고1 수학에 대해 할 얘기가 많은데
- 식변환 (수학 상에서 아이디어를 차용한)
- 평행이동의 활용
- 이차함수 감각과 대칭성
- 근의 분리
- 확대와 축소
등입니다.
곧 돌아오겠습니다
감사합니다
#무민
0 XDK (+5,030)
-
5,020
-
10
-
여전히 의대 이상으로 밝은 것 같음 진지하게 ㅇㅇ 문제는 그 유능함 컷이 해마다...
-
"바텐더, 오늘도 락스 온 더 락 한잔 부탁하네." 0 0
"하... 손님? 오늘은 저도 연차 냈다니까요? 그냥 알아서 좀 꺼내드십쇼."
-
러셀 최상위권 기숙 우선선발 0 0
우선선발반부터 들어가는 게 메리트가 있나요? 아니면 정규반부터 듣는 것도 괜찮나요?
-
합격증 2개는 받아보고싶어서 근데 어차피 전화 추합이면 합격증 안나오나
-
한양의 추합 0 0
진학사가 57명으로 잡는데 왜 이렇게 많이 잡는건가요? 작년재작년 16,7명이던데
-
졸리다 4 0
-
숙대 문과 vs 국민대 문과 2 0
당연 숙인가? 어케생각함
-
중대 다군 추합율 0 0
경영학과 보면 정원 200명 정도에 지금 진학사 보면 커버리지 80프로, 예산추합률...
-
손종원 보면 화가 남 0 0
단점이 잇겠지 저사람도? 없는거 같아
-
셋 중 하나만 해도 정병위험군 되는데 셋을 동시에 한다? 이렇게됨...
-
경북 모공vs성대 지솦 0 0
.
-
너기출 다 풀면 뭐해야 함 4 0
?!
-
동국 기계랑 숭실 전자중에 어디가야될지 고민인데..
-
이대 vs 중대 4 0
이화여대 국어교육 or 사회교육 vs 중앙대 철학 or 역사 로스쿨 가고싶은데...
-
대학 옮길 수 있으려나 0 0
ㅅㅂ
-
역시 돈 많은게 최고다 3 0
히히
-
둘다될거같긴한데 공대는 성대가 나은데 서강대 전자공학과에 대기업 장학트랙잘되있고...
-
선물줘 7 0
숨겨놓은 거 다 알아
-
옯붕이들이 참 좋아 9 0
크리스마스 날에 사라지지도 않고 한결같아서 참 좋아
-
진학사 고속 0 0
진학사가 짠건가요, 고속이 후한건가요 거의 모든 과가 고속이 높게 측정
-
진학사 표본이 안믿기는데 2 1
노룩패스 지원이 그렇게나 많은가 아니면 표본이 덜찬건가
-
메인 가는거 부담스럽다 1 0
저거 모작이라 원본 있는건뎅
-
프메 가격 0 0
프로메테우스 이번에 이거저거 추가되는데 가격 얼마쯤 할까요 교재만
-
마크할 사람들 서버 신청 ㄱㄱ 0 0
orbi.kr/00076596528 오늘 중으로 오픈 할게용 신청 ㄱㄱ
-
성대식으로 똑같은 사람이 2명 있는데 동점자 처리 엇캐 하나요
-
대체 무슨 삶을 살아온 것인가
-
일주일뒤 내나이 0 1
이륙이륙함
-
어어 왜 이륙해 4 0
-
5칸 1 0
5칸인데 위치 이러면 안정이리고 볼 수 있을까요?
-
아자스! 2 0
쌰갈!
-
아슬아슬하네 ㅜㅜㅜ
-
게이들아 ㅠ 2 0
게이게이
-
나 절은 가본 적도 업는대
-
정시라인 봐주세요.. 17 0
인문으로 어디 가능할까요???
-
다른 라인대 학교들은 이렇게 촘촘한것 같진 않은데 유독 중대는 소수과고 뭐고 엄청...
-
외로워요 9 0
오늘 만나요
-
슬 나가야지 4 0
여친있으면 방검복 입고있어라
-
서울대 높과 컷 근황 3 0
수리 전전 컴 화생공 진짜 구라같네
-
와 시발 눈온다 5 0
ㅈ됐다 ㅋㅋㅋㅋㅋㅋㅋㄱ
-
케이크 먹고싶네 1 0
퍼묵퍼묵
-
탐구를 사문 지구 했을때 불이익 가는 대학이 어디있을까요? 0 0
메디컬 제외했을때 어느 대학 입시에 불이익이 갈까요?
-
미국의 환율 조작국 지정은 화폐 가치를 절상할 때 지정하는게 아니라 오히려 화폐...
-
박선 0 0
박선 교재만 사는거 별로임?
-
저는 크리스마스에 잠수안탔어요 10 6
다들 아시죠!!!! 네!!!!
-
국장 안받으면 머 나중에 쓸 수 있나요?
-
얼버기 2 0
-
한양 사회 vs 중대 경제 0 0
한양대 가서 전과나 다전이 맞겠죠..?
-
달러로 바꿀 타이밍인가 0 0
폐업세일인가
-
오르비 버전으로 만들어볼까 1 5
크리스마스만 되면 갤 안들어오는 기만자 살처분
-
코인 투자금 3600 맞췄다 0 0
아더 1500 시바이누 1500 도지 600 내년초 중으로 리플 400 정도 사서...
개추
고1 수학 칼럼 좋다
개추

눈물을흘리며개추개추
개추

이야 개추오와 저 완전제곱식 계산 현우진쌤 보고 배웠는데 여기서도 보네용
https://orbi.kr/00064989284/%EA%B7%B8%EB]
그동안 올린 모든 칼럼은 여기서 확인하실 수 있습니다.
a와 b를 구하는 센스있는 계산이 궁금합니다요....
곧 그거가지고 제대로 칼럼 써서 올려볼게요!
ㅇㄷ
낭낭 ~
24년 6월 29번처럼 모양만 미적이고 99% 고1수학 문제가 나오기도 하는ㅋㅋㅋ
맛있어요