[칼럼] 사소하지만 생각보다 큰 차이 ㅇㅈ?
게시글 주소: https://orbi.kr/00072505601
안녕하세요
이대은입니다.
오늘은
제목을 약간 자극적으로 지었지만
누구나 이해할 순 있지만 누구나 쓰는 풀이는 아닌
이라는 주제로 칼럼을 보여드리겠습니다.
이런 풀이를 이해할 수 있는 것과
시험에서 본인이 스스로 사용하는 건
완전히 다릅니다.
이해할 수 있다고 가볍게 넘어가지 마시고
정말 본인이 시험에서 이렇게 풀 것 같은가 판단해봅시다.
많은 학생들이 이해하도록
무난한 문제로 보여드리는 점 참고하세요!
문제부터 바로 공개하겠습니다.
아래에서 공개하는 풀이는 정말 사소해 보이지만
이 사소한 차이가 조건을 해석할 때 엄청 큰 차이가 됩니다.
절대 어렵지 않은 문제니
한 번 꼭 풀어보시고
혹은
머리로 풀이 스캐치라도 꼭 하시고
글을 읽어주시면 훨씬 이해와 공감이 편하실 겁니다!
그리고 좋아요, 팔로우 한 번 부탁드립니다.
꽤 도움이 되는 글들로 자주 찾아오고 있거든요,, ㅎㅎ
1. 대부분의 학생이 진행할 풀이
일단 문제가 어렵지 않기에
많은 학생들이 반사적으로 손이 반응해서
대부분 동일한 풀이를 이용할 가능성이 높습니다.
아마 다들 이 풀이처럼
주어진 두 조건을 첫째항과 공차를 통해 나타내고
연립을 통해 각각 구해서 답을 구하셨을 겁니다.
물론 틀린 풀이는 아닙니다.
하지만
이 풀이가 수능에서 사용됐다면 문제가 없지만
기출분석을 하거나 공부 중 이렇게 풀었다면 아쉬울 수 있습니다.
바로 이어서 나오는 풀이를 이해해보시죠.
2. 센스가 있는 학생이라면
수학적 감각이 있는 학생이라면
이 문제를 보고 위와 같은 풀이가 아니라
다음과 같은 현명한 풀이를 사용할 겁니다.
먼저 풀이를 소개하기 전에
센스 있는 풀이가 가능하려면
다음과 같은 지식이 머리에 있어야 합니다.
이런 실전개념이 정리되어 있다면
이런 빠른 풀이가 가능합니다.
물론 문제가 쉬워서
누구나 할 수 있는 풀이라고 생각할 수 있지만
이 풀이를 이해하는 것과 풀 때 본인이 스스로 해내는 건
완전히 다른 이야기입니다.
이런 풀이를 경험하고
아 이렇게 풀면 빠르구나
하고 지나간다면 절대 네버 아무 의미가 없는 공부입니다.
이런 풀이를 어떤 근거로 떠올려야 하는가를
이해하고 다른 문제에도 적용시키려는 과정까지가 매우 중요한 공부입니다.
요즘엔 준킬러 (11~14, 20, 21번)에서는
이렇게 주어진 조건을 최대한 효율적으로 활용하려는 사고가
필수입니다.
예시로 든 문제가 쉽기에
그렇게 큰 차이가 안 나 보일 뿐
문제가 어려워지면 확실히 풀이길이에 차이가 납니다.
다음 글은 이번 예시완 다르게 풀이길이 차이가 꽤 큰
22학년도 13번에 대한 칼럼을 적어보겠습니다.
관심이 있으신 분들은
팔로우 해두시고 빠르게 확인하세요!
[칼럼] 이 문제 눈풀 가능?
[칼럼] 미적분이 어려운 이유
[칼럼] 기출분석의 방법과 필요성
[칼럼] 조건해석을 쉽게 하는 법과 실력을 키우는 방법
[칼럼] 중상위권에서 상위권이 되려면
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
강좌안내
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수잘 고닉들 모여서 같이 실모제작하는거지 이제 해설지에다가 각각 누가 만든 문제인지도 적고
-
ㅇ
-
전 180입니다
-
고등학교 전학 0
지금 제가 다니는 고등학교는 조금 괜찮은 ㅈ반입니다 중3때 고등학교 선택할때는 아는...
-
독서 양치기처럼 문학 양치기도 도움이 많이 되나요?
-
대 미 지 노래들으면서 공부하기
-
수특 독서 문학 0
수특 독서 문학 안사고 강E분 바로 사도 될까요?
-
(JTBC) 재판관 의견 '5 대 3'으로 나뉘지 않아 4
- JTBC 취재 결과, 재판관 인용/기각 의견이 5대3으로 나뉘지는 않은 것으로...
-
모고 기준이긴 한데 ㅈㄴ 어렵게 나오든 ㅈㄴ 쉽게 나오든 원점수가 대충 80점대 ~...
-
현우진이 특수특수개특수 하기 전에 비스무리한 거 제시했다네. 아래는 일격필살 허혁재...
-
내가 치과의사가 된다고? 내가? 여기서 뭘 하고 있는 거지? 이런 생각이 드네요
-
다시공부를해보자 2
3모망쳣어도… 할수있는만큼해보자!! 내신은 미적만 준비하고 나머지는 버리자…ㅋㅋㅋㅋ...
-
ㅠㅠ
-
2등급이 풀어도 되는지..
-
알콜수혈안한지 오래됏구나
-
하나코 5
도전 ㄱ?
-
이젠....
-
현우진 선생님 감사했습니다
-
2007년 일본의 모 대학 본고사 문제 한국 교육과정에 맞게 번역, 윤문을 하면...
-
기분좋은 날 오랜만에 모일까 내가 살아가는 삶을 정말 사랑하지 나는 기분좋은 날 오랜만에 모일까ㅏㅏ
-
사칭이 너무 늘었어
-
칼럼보고 감명 받아서 오늘 70분재고 24리트 풀었는데 22점 나왔어요.. 이정도면 잘본건가요?
-
기하런 1
기하런 어캐 생각함? 기하가 미적보다 공부량 현저히 낮다고 하는데 왜 주변에...
-
알바생이 너무 귀여움
-
뉴런 순서 고민 9
뉴런 본책 강의듣고 문제풀고 복습하기 -> 뉴런 본책 읽어보면서 수분감 풀기 ->...
-
ㄷㄷㄷ 6
-
나는 화가 나고 빡이 칠때마다, 펜을 들고 글을 써~ 오홍홍 나의 마음에 박힌...
-
이미지쌤 2
너무 귀여운데 저만 그런가요 와
-
아레나 할 것 같아용 실력 상관없이 ㄱㄱ 제가 더 못함
-
상당하군
-
종강이 늦어지네...
-
신기방기 근데 엄지 아래로 하는 아이콘이 아니고 걍 아래쪽 화살표임
-
개저씨 한마리 왜 빡쳤는지는 모르겠지만 커풀 한쌍 따라다니며 "야발련아 니 친구냐" 시전 ㄷㄷ
-
이거 빌런임? 1
번장같은데 보면 보통 거래되는가격이(56거래가 대부분인데 8혹은 3에 거래된거...
-
쳐다보노! 하 이거이거 참을 수 없다 하고올게
-
진짜 개슬픈점이 0
시계 새로 뽑았는디 아무도 안알아줌.. ㅠㅠ 걍 나랑 기싸움하는걸로 인지하고...
-
나라에 사기꾼밖에 안 남은거 같음
-
3덮 기준 점수가 15311이 나왔습니다 취약 과목이 절대적으로 수학인거 같아 하루...
-
짜장라면 추천좀 5
짜파게티 요즘 노맛이라 다른거 원함
-
수학 계획 7
공통은 수분감 step1 최근 5개년만 풀엇는데 3모 4떠서 자이 풀고 있습니당.....
-
제발 81점 어떻게 안될까 나도 알아 생각만큼 못나온거 그치만 성취감 얻고 싶어
-
죽지않아
-
필기체가 더 빠르다고 느껴지심? 전 아닌 거 같아서 섞어 쓰는데 님들은 어떠신가요
-
hp 노트북임니다 전원은 정상적으로 들어오는데 화면이 안들어오길래 화면문제인지...
-
제곧내
-
어차피 내가 내년에 과외뛰어서 페이백 행사 하면 되잖아
-
3.5퍼는 다 오르비에 있는거 같단말이야
-
연계를 대비하라는 말이 무엇을 어떻게 하라는 것인지 잘 와닿지 않을 수 있습니다....
-
그게 나야 바 둠바 두비두밥~ ^^

선생님의 칼럼 솜씨가 부럽습니다
엇,,, 제가 제 내용이 부족함이 느껴지는데,,,,, 좋은 말씀 감사합니다저는 실제 문제를 가지고 보여주는 형식의 글이 어렵더라고요
맞아요ㅠㅠ 수학이 직관적인 느낌도 강하고 조금만 내용이 어려워도 글로 이해시키기가 어려워서 저도 쉬운 문제로만 칼럼을 적는 중입니다ㅠㅠ

귀하신 분이 여기까지!!처음으로 칼럼 읽는 수학 4인데 등차중항 떠올린 게 센스였다니 뿌듯하네용
그럼요!
그렇게 의심을 통해 확신으로 풀이가 이어지면 되는 겁니다 ㅎㅎ
휴 살았다

좋은 글 감사합니다 선생님앗 좋게 봐주셔서 감사해요:)
그래도 보자마자 두번째 풀이로 풀어서 휴 했네요

분명 다 아는 개념인데 적용은 또 다른 것 같네요 감사합니다넵 ㅠㅠ 아는 것과 사용하는 건 다른데 많은 학생들이 사후적 풀이를 듣고 안다고 판단해서 넘어가는 경우가 많아 너무 안타깝네요ㅠㅠ