수학 칼럼) 극한상쇄 (231114)
게시글 주소: https://orbi.kr/00072371992
안녕하세요 :)
오늘은 극한상쇄로 유명한 23학년도 수능 14번에 관해 다뤄보도록 하겠습니다.
들어가기에 앞서, 만약 이 문제를 처음 보신다면
읽기 전에 한번 풀어보시는 것을 추천드릴게요!
1. 이 문제가 뜻하는 바는?
함수 h(x)는 극한으로 정의되었습니다.
그리고 선지 ㄴ, ㄷ은 h(x)의 연속성에 대해 묻고 있죠.
연속을 판단하려면? 극한값을 파악해야 합니다.
즉, 극한으로 정의된 함수의 극한을 다룬 문제죠.
간단히 정리하면 극한의 극한에 관한 문제입니다.
2. 극한 상?쇄
ㄴ, ㄷ 선지를 푸는 과정에서,
처럼 좌극한과 우극한을 더하는 상황이 나옵니다.
이때 좌극한(0-)과 우극한(1+)이 상쇄돼어 없어지는 것은 오개념입니다.
(개인적으로 현우진T 존경하지만, 오개념은 오개념이죠...)
왜 오개념일까요?
대학교 미적분학이나 해석학까지 안 가도 됩니다.
교과서 어디에도 좌극한과 우극한이 상쇄되어 없어진다는 말이 없습니다.
교과서에 없기 때문에 오개념입니다.
3. 어떻게 풀어야 하는가?
x, t라는 2개의 변수 때문에 헷갈리나요?
이럴 때는 좌변을 보면 됩니다.
h(x)라는 좌변을 신경쓰는 수험생이 잘 없더라고요.
h(x)는 t에 대한 함수가 아니라 x에 대한 함수죠?
그래서 x의 극한을 먼저, t의 극한을 나중에 생각해야 합니다.
함수 를 예로 들어봅시다.
를 구할 때, t보다 x를 먼저 생각해야 해요.
1의 좌극한은 1보다 작습니다.
그래서 0+을 더해도 1보다 작아요.
ebs 해설지는 범위 나눠서 함수식을 작성합니다.
이렇듯 복잡한 극한의 경우,
그래프를 통해서만 직관적으로 이해하지 말고
함수식으로 이해하는 편이 안전합니다.
(비슷한 풀이인 한성은T 영상도 추천합니다.
https://www.youtube.com/watch?v=HTPBKqgC5Y4)
4. 직?관
교육과정에서는 함수의 극한을 직관적으로 설명합니다.
'직관적으로'가 말은 거창하지만,
'대충 감으로'랑 같은 말이에요.
이 문제는 극한의 개념을 정확하게 알고 있는지 묻고 있습니다.
사교육을 받지 않은 학생이 교과서 내에서 이 문제를 풀 수 있을까요?
글쎄요... 저는 모르겠습니다.
교육과정이랑 수능이 정반대의 태도를 보인다고 생각해요.
그래서 저는 이런 문제 내면 안 된다고 생각합니다.
교과서에서 정확하게 정의되지도 않는 극한을,
'너 정확하게 알고 있어?' 라고 묻는 건 넌센스 아닐까요.
애초에 엄밀한 정의도 아니니까요.
5. 이제 어떡하죠?
극한의 극한...
어찌됐건 평가원 기출에 한 번 나왔던 주제입니다.
한번 나왔으니 또 나올 수도 있습니다.
우리는 힘이 없는 수험생이니까...
재출제 가능성을 염두에 두고 공부합시다.
특히 함수식 작성하는 풀이 연습해 놓으면,
극한의 극한 말고도 다른 문제 풀 때 도움이 될 거에요.
궁금한 점 있으시면 댓글 달아주시면 성심껏 답변드릴게요!
부족한 글 끝까지 읽어주셔서 감사합니다!
좋아요, 댓글, 팔로우는 작성자에게 큰 힘이 됩니다 :)
수학 칼럼)
실수를 줄이는 현실적 방법 https://orbi.kr/00072183669
계산실수가 많다면 버려야 할 습관 https://orbi.kr/00072173494
체계적으로 문제 읽기 1 https://orbi.kr/00072237485
체계적으로 문제 읽기 2 https://orbi.kr/00072300008
진도가 늦어서 불안할 때 https://orbi.kr/00072313784
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
47이다 히히
-
90점대 나와서 자괴감은 면했음 이제 진짜 공부한다
-
보정컷으로보면 인서울 될까요?
-
해설지를 보니까 k가 5인걸 바로 확인하고 합이 16인걸 이용해서 나머지 k값을...
-
준규샘 강의는 개좋은데 교재 디자인이 ㅋㅋㅋㅋ
-
기조 틀때 본질적인 공부 안하다기 불수능 만나면 그냥 끝남
-
ㅇㅂㄱ 1
지금 일어남
-
아무리봐도 그냥 정법이 맞는거같음
-
전문대 졸 26살 공시합격vs,인서울대졸 27살 공시합격
-
개념 준비는 수특 기출 캔버스만 봣어요 다 맞긴 했는데 개념형 문항으로만 20개인데...
-
수학 뭐가 쿠ㅗㄹ 더 좋음
-
무보 1등급 4
나오면좋겟다 영어빼고
-
'IQ 79 염전노예' 착취 가해자, 군의원으로 재임…재산 67억 달해 3
[서울=뉴시스]허나우 인턴 기자 = 지난 2014년 직원을 폭행하고 임금을 체불한...
-
약 3일정도 먹으면 괜찮대
-
볼드 처리된 단어의 뜻으로 옳은 것을 고르시오. The negotiator...
-
유정복 "전역증 있으면 지하철 등 할인제 도입할 것" 5
[인천=뉴시스] 이루비 기자 = 국민의힘 대선 후보 경선에 출마한 유정복 인천시장은...
-
3번 4번 7번 틀린 새끼는 뭐라고 부름?
-
화작 미적 정법 사문 75 72 47 44
-
아니 여기 왜케 악취가 심해요…?? 다들괜찮으신가요? 사감쌤한테 말씀드려도 별로...
-
힘들 때 곁에 함께하는 사람이 있어서 참 복 받은 인생이라고 생각이 드는 요즘이네요.. 4
여자친구랑 올해 수능 같이 잘 쳐서 내년부터 쥰나 놀러다녀야지 흐흐흐
-
. 0
완료 2024년 설맞이 수1수2미적 드릴워크북(수1 수2 미적) 드릴5 수2...
-
안녕하세요. 작년수능 6등급을 맞고 올해 3월부터 이미지쌤 커리로 공부 시작하게된...
-
아 힘들다 0
수험생일때보다 더 열심히 공부하는 것 같음 이게 ㄹㅇ 맞나
-
2주째임 병원 가기 싫어
-
얘들아 거기 함정이야……….. 본인 작년기준 9평이후 사문 쭉 고정만점(윤성훈,...
-
다들 굿모닝 2
방가방가
-
검더텅도 사라는거냐 아 진짜 괘씸해죽겠네
-
춥다 2
네겹 입어야지..
-
흰 반팔 꺼냄 6
와 개더움 반팔 입고 가야지
-
개허수라 개난잡한거 미리ㅈㅅ 그래프 만나는점없으면 안되길래 저렇게잡고 b랑...
-
그냥 이식을 그래프로 추측해서 풀었는데 이렇게 푸는데는 좀 무리가 있나?
-
고 12 때도 10분 안에 푼 게 없는데 이제 얼마나 쳐맞을지 모르겠음 요즘 시간이...
-
일이 터져야 조금씩 개선하려는 시도를 하는데 큰 실효성이 없으니 일은 계속...
-
대학생은 처음이라 불안하기도하고 잘 모르겠어요.. 쉬고싶을 때 쉬고 자고싶을 때...
-
수능 확통 만점자 찾음 13
질문이 있어 확통 만점자 찾아요 미적하다가 확통으로 변경 했는데 잘했나 걱정이...
-
안녕하시렵니까? 00년생 뒤늦게 학업의 꿈을 가지고 시작했으나 사정상 그만두게...
-
19학년도 수능 계약과 법률행위 몇 분 컷이 적당한가요 이 지문입니다
-
경제버리고 할거 ㅊㅊ좀 22
말장난 약하고 사문 귀류퍼즐 같은거 잘하는듯
-
오늘은 내한날 2
로쿠데나시 내한날 닌진누나
-
ㅈㄱㄴ
-
내가짱쎈 초능력자엿는데 사람들 존나 괴롭히고다니는 꿈꿧음.. 재밋긴햇어
-
자극 전파로 인해 문화접변은 생기는 겁니까? 아니면 안생기는 겁니까? 사문 고수분들 좀 도와주세요
-
안녕하세요 개념을 충분히 숙지해라 라고 하는데 이를테면 외우면 되는것인지.......
-
공부할맛 나겠다 좋은데요?
-
오전 공부 다끝나고 점심먹고 나가서 햇빛쬐주는데 글고보니 사람은 몸에 식물처럼 빛을...
-
국어 지문 내용 자체가 '이해'가 안되면 어떡하나요? 5
독서 어려운 지문이나 고전소설 있잖아요 한 10번을 읽어도 아무리 읽어도'이해'가...
-
자고싶다 4
근데 니 점수에 잠이 오냐 ㅑㅑㅑ
-
걍 내가 많은데 사는건가 그래두 한 몇년전엔 ㅂㄹ 없었는디
헉
선추후독
감사합니다
갠적으론 다시 나올일은 없을거같지만
오히려 개념 제대로 모르면 사교육 암만 받아봤자 못푸는 문제라 좋다고 생각함요
그렇게 생각하는 분들도 꽤 계시더라구요 :)
극한으로 정의된 함수 이제 안나올듯 ㅋㅋ
저도 안나올거 같긴 한데
수험생은 항상 만약을 대비해야 하니까요 :)
결이 같은 기출이 있기 때문에 출제에 무리는 없다고 생각함
두 문제의 결이 다르다고 생각합니다. 231114는 '극한의 극한 알아?', '좌극한과 우극한의 정확한 정의 알아?'를 묻고 있습니다. 반면 댓글로 주신 문제는 '절댓값 포함한 극한 어떻게 처리할 거야?'를 묻고 있죠.
애초에 교과서의 극한 정의가 정확하고 엄밀하지 않은데, 그 정의를 묻는 게 교육적으로 알맞은지, 그리고 231114 같은 문제가 학생의 무슨 역량을 평가한다는 건지 이해가 잘 안 갑니다.
극한의 극한이라고 생각하기보다는
극한으로 정의된 함수에 대해 구간 정확히 정해서 판단할 수 있냐는 문제라고 생각해서요
상쇄든 뭐든 그런건 곁다리이고
231114는 새로 정의된 함수에 대해 해석할 수 있냐를 물어본거죠. 그 정의를 극한을 기반으로 한거고
h(x)는 y=g(t)라는 함수의 t=x, x+2에서의 우극한의 곱이니 경계관찰 잘해? 이 차원의 단순한 문제라 보이거든요
그리고 위의 이미지의 문제도 새로 정의된 g의 연속성을 판단해야하니 결국 g의 극한에 대해 생각을 해야하죠
비슷하다, 안 비슷하다는 건 주관적인 영역이긴 합니다만, 선생님 말씀 들어보니까 댓글문제랑 231114를 유사하다고 볼 수도 있을 것 같네요. '극한으로 정의된 함수의 연속성'이라는 차원에서 보면 비슷한 부분이 있습니다. 다만 저는 231114가 명제-st라는 점, 경계에서의 좌우극한을 헷갈리기 쉽도록 묻고 있다는 점에서 차이가 있다고 느꼈습니다.
그와 별개로... 극한의 엄밀함을 고등학생한테 묻는 건 교육적으로 올바르지 않다는 생각은 변함이 없습니다. 교과서에 Cauchy-style의 극한이 있는 것도 아니니까요. 이 부분은 어떻게 생각하시는지 궁금하네요.
극한의 엄밀함을 고등학생한테 묻는 것은 올바르지 않지만, 저 문제는 극한의 엄밀함을 안다고 문제풀이에 유리한 것이 있다고 보기 어렵다고 생각합니다. 수학2의 과정에서 정합적으로 별 문제없이 풀리니까요
감사합니다
칼럼 잘 읽었어요.
그런데 좌극한 우극한 설명할때 1+면 1보다 "큰 쪽"에서 1로 "다가가는"
이라고 설명되어 있지 않나요?
간단하게 k(x)=lim[t->2+] f(t+x)라 하면
t는 2보다 큰 쪽에서 2로 다가가니 x+2보다 큰 쪽에서 x+2로 다가갈때 극한값이 k(x)라 할 수 있잖아요
그리고 lim[x->-1-] k(x)의 경우에는 애초에 x<-1인 상황에서 x가 -1로 다가가는 상황으로 볼 수 있잖아요
그럼 극한을 '다가간다'라는 것으로 생각할때 -0.9,-0.999, ... 를 넣어보면 lim[x->-1-] k(x)가 lim[x->1-] f(x)라고 나오겠네요
극한을 한없이 다가간다고 이해할 때, 그리고 좌극한과 우극한을 각각 작은 곳에서, 큰 곳에서 다가갈 때라고 이해하면 풀 수 있었다고 생각해요.
굳이 내면 안된다고 할 필요는 없었다고 생각합니다.
막 태클을 걸려는건 아니었는데 오해하셨다면 죄송합니다. 그냥 다른 의견이 있어 이야기해보고 싶었어요
'내면 안 된다'도 제 의견일 뿐이라서요 ㅎㅎ
좋은 의견 감사합니다