치환해서 극한값 구하는거 외워야됨?
게시글 주소: https://orbi.kr/00071864922
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거 외워야됨?
수렴하는 극한값을 bn이라는 수열로 치환한다음 an을 bn으로 표현해서 수렴렴렴 계산산산 한다는 아이디어인가?
강의에서도 안알려줘서...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고3이고 학종은 아예 답이 없어서 교과 또는 정시 생각하고 있어요. 담임쌤 시간이...
-
차단 +1 6
-
문장 한줄 한줄 마다 끈덕지게 반응할수 있음 그냥 탈분극 재분극 없이 한방에...
-
중학수학도 모르는 정말 “진짜 노베”ㅇ라 고등수학과정부터 시작해서 대략 6개월정도...
-
6모 언제? 0
6모가 미뤄지나요? 아니면 땡겨지나요?
-
피곤할때 1시간 자고 공부하는것보다 졸음참고 하면서 공부하는게 더 뿌듯하게 느껴짐...
-
걍 사랑한다
-
그러니 여러분은 오르비에서 디씨자아를 너무 많이 꺼내지 말아주세요....
-
92세 김말숙 초반까지 보고 껐다
-
방학때 잠깐 다닐려는데 시스템이 어떻게 되는거임뇨?
-
안 먹고 남겼는데 요즘 입맛이 바뀌었는지 먹게 됨
-
미적 과탐 실수밖에 없어서 반응이 시원찮음 생윤러들아 같이 울어줘
-
"가능할까요?" 시즌4 14
?
-
국어 일타강사분 현강을 듣는데(강민철 아님) 잡담이 너무 많아요. 체감시간으론...
-
오늘 30분정도 상담했는데 쓸데없는 비유만 20분을 하고 뭐 물어봐도 비유적으로...
-
미친 개똥줄 한번 타보면 탐구 공부할때 눈빛부터 달라짐 ㅋㅋ
-
의대갈거 아니면 3
의대갈거 아니면 확통사탐화작이 맞나요? 고대목표 문과가도됨 지금 시발점 미적상 밖에...
-
아니 좀 그럴 수 있는거 아님?
-
계속 냄새 솔솔 올라와서 좆같음
-
민주국가의 국민 각자는 서로를 공동체의 대등한 동료로 존중하고 자신의 의견이 옳다고...
-
작가가 되고싶다 10
하지만 의대는 꼭 가야겠더라 오랜 생강이다...
-
문과 확통하는데 나머지 다 2 이상 띄운다는 가정하에 수학을 몇등급 띄워야 인서울 가능할까요?
-
실은 내가 근 11~12년 전에 대강 예상은 하고 잇엇음. 그 때도 취업 ㅈㄴ 안...
-
치킨피자파티 2
1/100
-
훈훈하다는애들보면 얼굴개나주고 그냥 머리 펌하고 스타일만갖추면 훈훈하다하네
-
야이 기요미야 3
너말이야 너~~
-
잠들었어 0
너무 속상하다 . . 매일매일이 왜케 맘에 안 드는지..
-
예상댓글 : 글씨 꼬라지 ㅋㅋㅋㅋㅋㅋ
-
투데이: 8
아니 제 프사 그만 좀
-
메인 제조기 0
나야나 흐흐ㅡ
-
오류라고 하기엔 좀 그렇고 그냥 질문인데 2번 보기에 단모음 ‘ㅣ’가 반모음...
-
난 진짜 병신이네 12
-
맞팔구 2
ㄱ
-
대학생들 와봐요 4
친구들 스토리 보니까 무슨 이름적혀져있고 목에 하나씩 걸고 활동하던데 뭐하는건가요
-
생윤동사꾼은 중간 고사 기간에 지속적인 오르비 활동을 하며 부모님의 기대를 갉아먹고...
-
시간 삭제되네 ㄹㅇ
-
어디가서 사야돼요??
-
두 가지 것이 나의 마음을 늘 새롭고 강하게 감동시킨다. 그것은 내 위에 있는 별이...
-
씨발 망했다 2
탄핵 보다가 시간 너무 써버렸다 하
-
있?
-
피자나라치킨공주 3
예전에 유튜버 뒷광고인가 뭐 논란있지 않았나요 왜이렇게 익숙하지
-
고전시가 공부하는데 잔나비라는 단어가 많이 나오길래 함 찾아보니까 원숭이라던데 그때...
-
오늘은 불금인데 6
다들 뭐하심?
-
재매이햄 비호 여론이 장난이 이니던데
-
수능수학 목표 변경 28
중간 2에서 낮은 3으로...
-
총선 졌으면 얌전히 있을것이지 ㅉㅉ
-
칸트는 자기 자신을 속이지 말 것 이란 정언명령에 어긋난다고 보겠군..
? 뉴런에 진짜 안나와요?
저거 킥오프에요
수렴렴렴 계산산산 다 따라하는구나
뉴런 들었어서 뇌리에 박힘요 ㅋㅋㅋㅋ
걍 1번처럼만 풀어도 상관없을듯
근데 또 엄밀한거 좋아해서
저건 너무 야매인데 2번 풀이는 너무 어려운?
누가 2번처럼 풀이 쓰라고 시키면 막힘없이 쓸 줄 아는 실력 만들어두고
실전에서 1번처럼 하셔야합니다
이게맞다
아 그게 정배군요 감사합니다
차이는... 없긴 해요
근데 위에는 그냥 야매로 빠르게 풀 수 있는데,
아래는 발상이 잘 떠오르지도 않고 왜 치환해야되는지 이해가 잘 안가서요.
지금처럼 단순한 꼴에서는 무조건 1번으로 풀어야하지만
복잡한 꼴로 문제가 주어지면 2번으로 접근하는 방법도 생각해야 한다라는 김기현T의 생각이 녹아있는 것 같네요
아하 그렇군요 정말 감사합니다
근데 대충 본문에 써둔 걸로 이해하고 아래 풀이도 공부해야겠네요...
대충 분모분자에 극한 나누어주면 계산 빠르게 되지 않나요
분모 분자에 뭘로 나눠야 하나요?
그냥 수열 an 띡 하고 준거라
분모분자 모두 0으로 수렴하지 않으니까 위 아래 둘다 리미트 씌워서 계산하면 되지 않나요
0/0꼴에서 수렴값이 16/7이 나올 수도 있는 거 아닌가요? 전 분모 분자 수렴성이 확실하지 않아서 리미트 쪼개는게 불가능하다고 생각하거든요.
쪼개면 안 됩니다 원래
근데 제가 말씀드렸듯이 쟤는 상수곱과 상수 덧셈으로 구성한 거라 0/0이 나올 수 없어서 쪼개도 됩니다
정말 감사합니다 사랑합니다
둘이 0/0꼴이 안되니까 가능하죠
이해했읍니다 감사합니다
수능은 저렇게 풀면 멍청한 거고 내신 서술형에선 저렇게 풀어야 합니다.
아래에서 치환을 해야 하는 이유는 어떤 수렴하는 수열 a_n 과 b_n에 대하여 이것들의 사칙연산으로 만들어낸, 또는 상수의 곱 혹은 덧셈/뺄셈으로 만들어낸 수열이 수렴하며 그 극한값은 기존 극한값에 해당하는 연산을 취한 것과 같다는 것이 알려진 사실인데, 저기서 주어진 합성 수열의 극한값으로는 a_n이라는 수열에 대한 정보를 직접적으로 얻을 수가 없습니다. (사실 유리함수처럼 만들어서 어떻게어떻게 비벼볼 수는 있는데 그게 치환하는 거랑 다를 바가 없습니다.) 그래서 치환을 통해 a_n을 수렴하는 수열 b_n에 사칙연산을 적용해서 만든 수열로 간접적으로 구성하여 보는 겁니다. 우리가 아는 것, 즉 전제로 주어진 사실들만 사용해야 하니까요.
다만 주어진 상황에서 극한값 lim (5a_n - 2)이 존재한다고 가정을 하는 것이 가능하므로, a_n의 극한값 역시 존재하며 당연하게도 그것의 사칙연산으로 만들어낸 수열인 (2a_n +1)/(4a_n-3)의 극한도 존재함과 동시에 그 극한값을 a_n의 극한값을 alpha로 두고 상응하는 사칙연산을 취하여 구할 수 있습니다. 이런 풀이가 수능에서는 가장 일반적입니다.
엄밀함을 요구한다면 치환 없이 푸는 풀이는 0점이라고 보면 됩니다.
선생님 정말 정성스러운 답변 감사합니다.
다만 의문점이 하나 있는데, an의 극한값을 알파로 두고 사칙연산을 한다고 할때,
(2an + 1)/(4an - 3)이 0/0꼴이라면 극한을 쪼개서 계산하는게 불가능하지 않나요?
애초에 an의 극한값을 알파로 두고 사칙연산을 하는 것부터 엄밀함과는 거리가 멀지만 궁금해서 여쭤봅니다.
a_n의 극한이 존재한다고 가정했을 때
애초에 식의 형태 상 분자 분모가 둘 다 0일 수는 없고, 분모 또는 분자만 0인 것도 불가능합니다. 값이 0이 아닌 실수로 나온다는 것이 원래 전제이고 alpha를 사용하는 것은 우리가 쌈마이로 도입한 전제니까요.
아 그렇네요 정말 감사합니다!