기출을 Deep하게 보는법 (기초편1)
게시글 주소: https://orbi.kr/00072686139
일단 미리 말하자면
이 방법론은 극상위권이 되기 위한 기초작업임
수능수학에서 적당한 점수를 받고 싶으면
사실 기출의 풀이만 외워도 괜찮음
그래도 대충 대학가는데에는 지장이 없음
이 방법은 대입수학의 끝을 보고 싶은 사람이 어떤 식으로 시작을 할지에 대한 얘기임
수학문제를 볼 때 Deep하게 보는 방법
우리가 대학가려고 푸는 수학 문제는 크게 3가지로 구성되어 있다.
한국어, 수식, 그림과 그래프
수학 문제를 푼다는 것은 이 요소간의 호환을 하는 것과 크게 다르지 않는다.
처음에는 쉬운 문제로 연습
문제에서 그래프가 항상 지나는 점을 구해야 한다.
항상 지나는 점이라는 한국어를 어떻게 번역할까?
이를 생각해보면,
만약 항상 점 (a, b)를 지난다면, y=f(x)의 식'과 관계없이' f(a)=b라는
사실을 의미한다.
그러면 이제 우리의 머리 속에서 'f(x)의 식과 관계없이'? 라는 상황에 물음이 생기기 마련이다.
이 물음에 대한 답이 바로 나오지는 않으므로, (가), (나), (다)를 해결한다.
(가): f(x)=x^4+...이다.
(나): f(2)=2, f'(2)=0
(다): f'(0)=0
f(x)는 사차함수이므로, 결정하려면 조건이 5개가 필요한데
이 경우 조건이 4개 뿐이다.
'물론 조건이 4개라는 사실이 항상 f(x)를 미결정 상태로 만드는 것은 아니다'
이에 대한 출제가 25학년도 6평에 되었다.
조건을 만족하는 f(x)를 표현하면 위와 같이 결정할 수 있다.
p가 단일 실수로 정해지지 않았기 때문에 발문이 저렇게 형성된 것을 알 수 있다.
이제 다음 스텝이다.
이 말이 무슨뜻일까?
이 단계의 해석을 하기 위해서 우리에게 필요한건 기시감이다.
'~~와 관계없이 항상'이라는 표현을 우리가 언제 보았지?
이 과정을 생각해내지 못했으면, 갖고 있는 교과서든 텍스트를
통해 점검을 하는 과정이 필요하다.
위의 3가지 요소 사이의 호환은 영어 문장을 해석하는거와 비슷하고
우리가 해석을 하지 못하는 것은 일차적인 이유는 영어로 치면 구문이나 단어를 몰라서이다.
그럼 이제 우리는
이 표현이 고1때 배웠던 항등식에서 자주 등장한 표현이고
매우 관련이 깊음을 알 수 있다.
x와 무관하게 f(x), 즉 y의 값이 나타나는 지점을 보아야하므로,
x, y가 아닌 다른 문자, 즉 위의 식을 p에 대한 일차식으로 정리해야한다.
좀 더 편한 설명을 하자면, p의 값에 관계없이 고정점을 지나려면,
f(x)가 p에 대한 상수함수여야 한다. 만약 0이 아닌 m에 대해
f(x)=mp+n이면, p=1일 때와 p=2일 때 동일한 값을 가질 수 없기 때문이다.
이런 이해가 되었으면, 결국 x=2, -1인 상황이 고정점이라는 추론을 할 수 있다.
여기서 조심할 점은 이 과정을 상기(上記)의 통찰없이 결론을 외워서는 안되다.
수능 독서 경제기출을 여러번 풀고 '아 이 지문 환율알면 딸깍이야'로
공부하면 그 학생은 ㅂㅅ이 되는데 수학은 유달리 저런 공부에 관대하다
그리고 문제의 모든 장면을 이렇게 진하게 여운을 남기는 과정을 반복하면
사람의 뇌가 참 신기해서 같은 장면이 겹치는 다른 문제들이 많이 보임
그리고 이 과정을 반복하면 실전에서 그냥 생김새만 닮은 문제가 아니라
진짜 발상 과정, 처리 과정이 유사한 문제가 보이게 되고 그때 힘을 발휘함.
그럼 이제 단어를 몰라서 문장을 해석하지 못하듯
지식의 빵꾸가 나서 이런 과정을 못하는 문제의 경우에는?
다시 해당 개념을 학습 후에 여태까지 넘어갔던 기출을 재학습하면서
적용가능한 내용이 있었음에도 본인이 빼먹었나를 점검하면 됨
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기적의 논리 0
R(x) : exists in reality E(x) : exists 1. ∀x...
-
아니 범주 끊어읽으라고 할때마다 뭉탱이로 읽지말라고 하시누...
-
울고잇어 0
할게 많네
-
그렇다는데
-
인용 이후에도 어떻게 될지 모르겠네
-
잡담한다고 좀 찡찡댄거 말고 이상한말은 안했을건데 #~#
-
탄핵되면 무등비 삼도극 재등장할수도 있음... 11월까지만 버텨다오...
-
지금부터 12시까지 밥 먹어야지
-
교재 주문했는데 파본 받음 문의했는데 사소한 파본이라 아무 보상 못해준다고 그냥...
-
퇴근 10
ㄱㅇㄷ! 집간다오예
-
여붕이 등장 4
반겨라
-
1교시를 자야하는데 1교시가 잠을 못 자는 과목인 거임 (쌤이 깨우심) 진짜 힘들어...
-
오늘은 5
과탐 달려야겠네
-
중경외시라인 반수생 통통이 작수 공통 4틀 낮 2 3모 방금 풀어보니 79점...
-
피곤해요
-
[상황] 생윤 사회계약설 로크,홉스 인강 질답중 [[[필자가 궁금한 것]]] 1....
-
앵간ㄴ히 하고 자야겠다
-
나는 200명도 힘들어 디지겠는데 300명은 우와..
-
그랫다고..
-
궁금합니더
-
역시나 독서
-
반수생 수학 개념 교재 없이 강의만 듣는거 어케 생각함? 개념을 많이 까먹어서;;
-
썩쓸 씨발련아.
-
평가원만 있는거
-
분석하는데 1시간 넘게 걸렸는데 분서ㄱ하다가 머리터져서 내일 다시할거 같음....
-
67466>34425>
-
남자팬티던데 게이인가요 ㅠ
-
스타팅블록을 따로따로 구매한사람이 아니고 패키지로 구매한사람 한테만 무료로...
-
처음에는 ㄹㅇ 짐승의 그것과 같았다 이제는 좀 나아진듯
-
하 0
국어만 어떻게 하면 될거 같은데
-
왤케 안 팔리나요? ㅇㅂ때문인가
-
김승리tim 0
지금 올오카 3월 14일 쯤 부터 시작해서 지금 theme 4 들어갑니다. 아마...
-
가난한 ㅈ고딩 10
최소한의 돈으로 먹을 수 잇는 젤 맛잇는거 추천해주세요 ㅜㅜ사실 근처에 편의점밖에 없어요
-
인스타 댓글에 저거 많아서 한반 검색해봤는데 보다 끔 ;; 왜 검색하지 말라는지 알아버렸다
-
명언 추천좀 4
암거나 ㄱㄱ헛
-
"만약 여러분이 수학학원에 갔는데 로그함수가 뭔지도 알려주지 않고 일단 문제부터...
-
암산테스트 0
101 나오는 사람도 있는데 이거면 좀 낮은편 아닌가
-
하지말아주세요.짜피 반응 안하니까제 몸에서 반응하는 부위는 한 부위밖에 없음뇨
-
[속보] 윤 대통령 탄핵심판 선고 방청권 경쟁률 4,818.5:1 0
내일(4일) 윤석열 대통령 탄핵심판 선고에 참석할 일반 시민의 방청 경쟁률이...
-
한국 관세율, 발표는 25% 행정명령은 26%?…1%P 높아진 이유 답 없는 미국 2
도널드 트럼프 미국 대통령이 2일(현지시간) 한국에 대한 상호관세율이 25%라고...
-
국민연금안내면 통장압류하고 특정연령표수가 많으니까 정치인들 눈치봐서 개혁안통과시키고...
-
기대된다
-
어디가 유망하죠? 입결도 비슷한데 선택기준이 뭔가요?
-
저능아 ㅇㅈ 8
.
-
애들이 거의 다 기출+ 심화학습지 풂 좀 잘하는 애들은 엔제풀던 애들도 꽤 있던데
-
히히히
-
선착순. 5
저메추 받음.
-
캬캬
-
3월 모의고사 76543 지금부터 밤새가면서 공부하면 의대 가능한가요??? 7
저녁메뉴 추천 부탁드리겠습니다

고수들의 의견은 하나로 수렴하는군요칼럼들 주제가 너무 좋음
개추가 더 박혀도 좋지않을까 라는 생각을 함
개추에 스크랩까지 완료
저도 박아드림
모든 칼럼의 공통은 사고하는 것
이래서 고1수학이 중요함뇨
인수정리 << 나머지정리파트애 대놓고나옴

이사람글중에 유일하게 처음부터끝까지 이해한듯다음글도 쉽게써주세요
그리고 문제의 모든 장면을 이렇게 진하게 여운을 남기는 과정을 반복하면
사람의 뇌가 참 신기해서 같은 장면이 겹치는 다른 문제들이 많이 보임
<<ㄹㅇ인듯요 풀이과정과 결론을 외우는게 아니라 단계를 차근차근 곱씹어야함
어쩌다 보니까 박제가 되버렸네요 ㅋㅋㅋㅋ 칼럼 정말 감사합니다! 조금 다른얘기이긴 하지만 결국 매 문제를 진심으로 대해야 머리에 더 기억도 잘 나는거 같아요 알려주신대로 기출 사고과정을 더 촘촘히 쪼개면서 사소한것도 놓치지 않아보겠슺니다 1등급 꼭 쟁취하겠습니다 형님
국어에서 기출분석 했던 방법이랑도 조금 비슷한 것 같기도
기출에서 이뤄진 사고과정을 파악, 이해하고 그것이 다른 기출에서 어떤식으로 활용되었는지 파악하는게 중요한걸까요?
국어에서도 지문이나 선지에서 나온 표현, 사고, 서술 방식이나 과정 등이 겹치는걸 엮어보면서 기출을 봤던 기억이 있어요
그걸 어떻게 하냐에 대한 얘기기도 합니다
하수들이 무지성 조건 연립할 때 중수들은 문제를 한 번 더 보고,
중수들이 발문에서 도움을 받을 때 고수들은 발문으로 나아갈 방향을 잡고,
고수들이 발문과 조건들을 연결할 때 GOAT는 발문이라는 메인요리에 조건들로 간을 하는 거네요.
7ㅐ추드립니다행님
f(x)= (x-2)* +p(x-2)3+(3p-8)(x-2)°+2
이거 식이 왜 이렇게 나오는지 이해가 안되면
어느 부분을 학습해야 하나요??
x^4 + ax^3 + bx^2 + cx + d 잡고 계산벅벅 안하고 저렇게 바로 나올 수 있다니..
인수정리, 나머지정리 여기쪽 파트인가요??
수2 뉴런 초반부분에 있어요
x방향으로 -2만큼 평행이동 시켰다고 생각하고 식 작성 후에 원래대로 돌린거라고 보면 이해가 쉬우려나요
좋은 글 써주셔서 감사합니다