[칼럼] 난 어려운데 남에겐 당연한 풀이인 이유
게시글 주소: https://orbi.kr/00071586417
안녕하세요
오르비by매시브 수학강사 이대은입니다.
오늘 글 주제는 제목 그대로입니다.
제가 글에서 적는 것이 보이지 않는 학생이라면
혹은
보려고 노력하는 학생이 아니라면
지금하는 공부가 잘못됐을 가능성이 높습니다.
시작해볼게요.
잘 읽어보고 판단해보세요 :D
그리고 좋아요, 팔로우 화력좀 보여주시면 감사를,,,
다음 문제를 보고 여러분들은 어떤 생각이 드시나요.
아마 80%의 학생들은 다음 두 가지는
떠올렸을 거예요.
참고로 이 문제의 오답률은 83.7%입니다.
여기서 위의 로그식을 지수형태로 바꿔서
두 식을 연립하면
다음과 같은 식이 됩니다.
아마 여기까지는 꾸역꾸역
도달한 학생들이 많을 거예요.
문제는 이 다음부터인데요.
아마 여기서 70% 정도의 학생들은
이 식을 적고도 속으로
So what?
이라 생각했겠죠.
근데 여기서 만약 문제에
라는 조건을 적용시킨다면
b가 1개란 뜻이므로
방정식
에서
로 치환하면 이차방정식
의 양의 실근이 한 개임을 이용하여 답을 구하면 된다.
이차방정식에서 구간에서의 실근의 개수
와 관련된 문제는 근의 분리를 이용하면 되기에
와 완전히 같은 문제가 됩니다.
그럼 결국 제가 여러분들께 물어보고 싶은 질문은
과연 위의 두 문제가 서로 같은 문제임이 보이느냐.
입니다.
아마 다들 보이지 않았으니
오답률이 83.7%나 되겠죠?
그럼 이제 두 번째 질문입니다.
위의 두 문제가 같은 문제임을 파악하기까지
필요한 수학적 개념이 과연 수학1에 있는 개념인가?
입니다.
조금 격하게 표현하면
So what?
에서
이걸 활용할 수 있느냐
입니다.
솔직히
한국어를 아느냐
와 같은 것이죠..ㅎㅎ
일반적으로
안정적인 1등급 이상의 학생들은
첫 문제와 같은 준킬러 이상의 문제에서
두 번째 문제와 같은 기본유형을
찾아내는 것을 매우 잘합니다.
그렇다면 1등급이 되려면
문제에 들어있는 유형들을 파악하는 훈련을
반드시 해야겠죠.
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
또는
이대은T연구실 번호
01080719636 (선 문자 후 통화가능)
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇ?
-
스트릿이라 해야하나 그런 느낌을 원함
-
잇올 건물 젤 윗층이라 바로 뛰면 됨
-
기하런 5
ㄷㄱㅈ
-
어제는 이름에게 듣다가 졸라 슬퍼져서 갖자기 눈물이 남요… 저번주에는 도경수 노래 듣다가 울었어요…
-
내가 누구? 정병저능모솔찐따키작존못삼수생 대세는백합갤러리나 다시 가야겠다
-
옵스타에서도 8
찐따인 나 ㅋㅋㅋ
-
그리고 그냥 대행 계속 바꿔가면서 하는게 나라 더 잘돌아갈거같은데
-
오르비에 내 본명이랑 학교랑 나이까지 아는 사람 많은데
-
재수생이고 작수 때 언매는 다 맞았는데 (언매가쉽긴했어요) 현역때 수학을 안 해서...
-
그린라이트임?
-
글삭해야지 7
다른 분들이 정리해 주실 겁니다~
-
그런가
-
구마유시와 페이커.. . . . . 어그로 죄송합니다. 기생집 전단원 점프를...
-
쓸거 생길때까지 안써야지
-
ㄹㅇ?
-
소신발언) 5
오르비 닉 언급할때 초성으로 말하는거 짜침 상남자답게 풀네임 언급해야
-
물리 하세요~ 4
재미써요~
-
작수는 화작 아다리로 4등급 컷 받았었능데 이번 3덮 70분쓰고 독서 두개 문학...
방금 화2가 안풀렸는데 원인을 찾았습니다
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 의도와 다르지만 다행이네요,,,,ㅎㅎㅎㅎㅎ
너무 유익한 칼럼이에요
사실 15번 22번 30번도 결국 포장지로 겹겹이 싸여있을 뿐 본질은 거기서 거기겠죠?
그럼요 ㅎㅎ
물론 기본유형을 찾는 과정은 킬러문항에선 당연히 어렵겠으나, 해당 유형은 쉬운 포장지로 바뀌어서 3점으로도 충분히 출제가 될 수 있습니다. !!