[자작문제 해설] 수1 삼각함수 문항
게시글 주소: https://orbi.kr/00071486499
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재수생이고 작수 통통이 원점수 93인데 안가람 시즌2 듣고 잇는데 뭔가 수학실력이...
-
ㅇㄱㄹㅇ
-
차주현 빼고 다버릴예정이라 편하게 강기원 미적있다하면 김현우 미적이 나을까 박종민...
-
꽃 받고싶다 5
프사가 꽃일 정도로 꽃 자체를 좋아하는데 꽃 받는거는 더 좋아해
-
오늘도 영어 지문외우기 유기함 ㅠㅠ 하 씨발
-
우리집 놀러오면 대성 계정 공짜로 줌+김준 크포 교재 무료로 드림 오실???
-
하 뭔가 마음이 허전해 얼굴도 못생기고 성격 더럽고 참 씁쓸하구만
-
Ebs문학 누구꺼 들을까요? 지금 김동욱쌤 커리 타고 있는데 ebs수특은 아뮤나...
-
고양이상 눈나랑 3
만화카페 데이트 하고 시프다
-
딱보니까 이런거 하겠지 지금 이거말고 할게있나 아 이거하고싶다
-
정치병자들 때문에 길거리든 커뮤든 개판되겠네 ㅋㅋ
-
이번룸메는정상이길바라며초반에매번ㅈㅉ친절하게잘해주는데 0
매번개병신이야미친씨발 씻고 머리카락 바로치우는애 여태 한명 코안고는애 영명
-
초6때부터 강의하듯 여러과목 공부하고 쌤들 따라하니 강의력 버프먹음. 판서는...
-
둘중 자신있는거 하나 골라서 정답맞추시는분 만덕 드립니다 풀이과정 필수지참입니다
-
두근두근
-
고2 정시파이터입니다 수업시간에 수학을 풀어도 개인시간에서 하는것 보다는 속도도...
-
덕코주세요 0
낼 뭐하나 쓸게 이를태면 확통30번 실전풀이?
-
???: 0
그냥 귀찮으니까 한번에 묶어서..
-
과외생 구했음 2
성적 몽땅 올려주고싶음
-
손글씨 모음 2
-
나도 덕코줘 4
잉잉
-
탄핵선고 두 번째에 계엄령 선포되는 걸 실시간으로 보기도 하고 신기함
-
이라는 나쁜 말은
-
룸메n
-
고2 정시파이터입니다 수업시간에 수학을 풀어도 개인시간에서 하는것 보다는 속도도...
-
갑자기 확 상승한거같은데 원인이 뭘까 이걸 알아야하는데
-
2/35
-
일반고 2.8정도인데 경희대 학종으로 간다고 아주 수시 생기부 컨설팅에 뽕이 차있는...
-
하다보니 좀 늘엇음
-
아오르비재밋다 2
아 오르비 해야지 흐 재밋다 흐 재밋다 서바 다운링크 차자따!!!!...
-
불끄겟다니까 스탠드키고쳐함 1학년실험보고서얼마나걸린다고 여태안쓰고뭐함미친
-
지금 맞팔구하면 2
팔로워 느나.. 애기혀녀기 팔로우해주세요 ㅎㅎ
-
원하는 그림 그려줌 12
최대한 간단한걸로
-
좆됏네 1
내 돈 다 어디가노..
-
내..대가리를...깨겠다.. 라고 적혀있는데요 교수님?
-
국어 3모 89 6모 84 9모 92인데 25수능 독서 10틀 문학 1틀 언매 1틀...
-
오늘 탄핵심판....
-
주석님 2분 오실거같은데
-
이거 하고 잘꺼임
-
김승리가 하지말래서 못하는중임...미리 스포 안해주나? 풀커리 탈거라서 말...
-
손글씨 ㅇㅈ) 3
선착순으로 추천받은거
-
으대<< 여기는 4
보통 성비는 어케됨? 그리고 예쁜 애들 많음? 애들 텐션이나 그런건 어떰? 다 공부...
-
아니면 그냥 먹나요?
-
앞자리 여자애 개귀여움 13
근데 고딩임 이런생각이드는내가싫다 숨 30분만 참을게~
-
와 나 고딩 때 2
저딴 옷 어케 입고 다녔노
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ

어려워서 못풀었을듯
사실 삼각함수를 원래 잘 못 씀 ㅜㅜㅜㅜㅜ"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!

으악 맞네요 a와 ㅠ-a라면 이야기가 달라지겠네요..!! 제 풀이에 비약이 있었군요좋은 문제 공유해주셔서 감사합니다 :)