[수학] '가비의 리' 이걸 안다고?
게시글 주소: https://orbi.kr/00071340870
안녕하세요
오르비by매시브 수학강사
이대은입니다.
오늘은
수능출제과목에 들어있는 내용은 아니지만
기출문제에 간혹 사용할 수 있는 문제가 있어서
재미삼아 보라고 들고왔습니다.
주제는
가비의 리
입니다.
솔직히
몰라도 됩니다.
당연한 이야기지만
고등교육과정을 넘어가는 풀이가
훨씬 빠르면 출제할 수 없으니까요.
그래서 근사가 사라졌,,
그럼 시작하겠습니다!
시작 전에 좋아요, 팔로우 한 번씩 해주시면 감사하겠습니다.
1. '가비의 리'란?
공식부터 보여드리면
입니다.
자세한 식에 대한 설명은 생략하고
이렇게 뜬금없는 가비의 리가 문제에 어떻게 적용되는지
한 번 봅시다!
2. 사용할 수 있는 당위성은 식의 형태
제가 적는 칼럼의 공통된 말이지만
많은 수학적 도구를 알더라도 결국 사용하지 못하면 아무 의미가 없습니다.
수능에 출제가 될 가능성이
높지 않다고 생각되지만
그래도 배우는 김에 언제 쓰이는 지 알면 좋으니까
설명해보겠습니다.
문제에 어떻게 적용되는 지 예시를 통해 보여드릴게요.
문제를 읽고
어떻게 가비의 리를 적용할 수 있을까
를 생각해보세요!
제가 수업 때 매일 강조하는 말이 있습니다.
수학을 잘하기 위해 필요한 1번은 의심하고 집착하는 태도이다.
가비의 리 식을 자세히 보시면
분수끼리 등호관계가 성립하는 경우입니다.
그리고 예시로 든 문제의 조건을 보시면
식의 형태가 유사한 게 보이시죠?
게다가 왼쪽 두 식의 분자끼리의 합이
가장 오른쪽 식의 분자와 같다는 걸 근거로
왼쪽 두 개의 분모끼리의 합이 3이라는 관계식을 이용하면
최종값이 등장하는 관계식이 생김을 알 수 있습니다.
이후의 풀이과정은 당연히 아시겠죠?
이제 좀 가비의 리를 이용한 풀이가 보이는 학생들은
살짝 더 어려운 아래의 문제에서도
가비의 리 풀이를 떠올릴 수 있을 겁니다!
밑변환공식을 이용하면
왼쪽 세 식의 분모끼리의 합이 맨 오른쪽 분모와 같다는 게 보이시죠?
그럼 당연하게도 답은
2, 5, 10의 곱인 100이 됨을 손 안 대고 풀 수 있습니다!
오늘 글은 여기까지입니다.
지금까지 적었던 글과 다르게
가볍게 읽어주시면 될 글입니다.
세상엔 다양한 풀이가 있고
언제나 더 많이 아는 것은 나쁠 게 없습니다.
다만
하나도 제대로 알지 못하고 다양함만 추구하는 것은 상당히 문제다!
라는 것을 잊지마세요. :D
그럼 다음에 또 다른 흥미로운 글로 돌아올게요!
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
또는
이대은T연구실 번호
01080719636 (선 문자 후 통화가능)
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
임정환 생윤 임팩트 좋나요? 림잇끝내서 실개완&마더텅 조합으로 바로 넘어가려고했는데...
-
미적분 기출 마플로 한번 돌렸고 이제 시험 3주 남아서 기출 한번더 돌리면서 다른...
-
평반고 총내신 3.91 이고 물2화2까지 다듣긴했는데 1,2학기 다 성취도 c에요...
-
벚꽃흩날리는거 4
ㅈㄴ이쁘당 마치 눈같아
-
못 참겟다 2
네
-
재수생이라 잇올에 있는데 14시간 앉아있어도 순공시간이 2시간밖에 안나와요 시발점...
-
A+ 가능할까 0
내일부터 조금씩 할 거 같은데
-
0 100 0 100 0
-
4500원 개비싼데 맛있다길래 후기좀
-
우일신(又日新) 파본형 월간 N제 1월호 :...
-
수학적으로 위의 문장은 당연히 뻥이다. 하지만 이걸 이렇게만 얘기할거면 이 얘기를...
-
판서수업 좋아해요 윤성훈샘 강의 좀 들어봤는데 PPT수업이라 저한테는 잘 안와닿는...
-
진격거 재밌더라구요 19
저는 한지가 좋아요
-
수능 사회문화 문제는 처음 봐보네용 윤성훈 선생님 커리 타기 전에 메타인지 하는...
-
-1.5등급 하라는데 맞나요??
-
족발 시켰어요 4
먹지말고 피부에 양보하세요~
-
맛저 0
-
매트릭스 ai도 지구정복하기 전엔 지브리 그림이나 만들어주고 있었을거 생각하니...
-
기하 처음해보는거라 너무 어려운데 처음이면 정상인가요 이게 쉽게 넘어갔었어야하는건가요?...
-
The fork’s journey from reviled symbol of...
-
국어 언어와 매체 수학 확률과 통계 탐구1 경제 탐구2 사회문화 라고 생각했을 때...
-
담배피면서 한번 돌려봄 ㅁㅌㅊ?
-
사탐런 4
제가 현역 사문1지구4 여서 지구를 사탐으로 바꿀까 고민중이여서 생윤을 들어봤는데...
-
애니추천 ㄱㄱ 6
요즘걸로
-
안녕하세요 재수생입니다 작년에 생지로 시험 봤다가 현재 생명 사문으로 수능...
-
어지러워요
-
이 사람 풀이가 고능한 것도 있는데 큐브에 맨날 상주해 있음 혹시 오르비언 아님?
-
제곧내입니다 유튜브에 영상 찍어서 올려용. 리트 등등 타 기출도 가능합니다! 문학도...
-
수능 전과목 만점, 내신도 1.0이라 못 가는 학과 없음 어느 과 가든 안정성,...
-
계속 이 세상에 존재하지 않는 논문을 제시함 ㅋㅋㅋㅋ
-
수고해라
-
ㄹㅇ 어케 푼거지 삼각함수로 저렇게 간단하게 어려운 느낌 주는거 신기하다
-
뭐하는지 물으면
-
이건 짱구 그리고 공포 영화 스타일로 포스터 만들어 달라 하니까 이지랄...
-
유일함
-
답지가 이해는 되는데 제 풀이가 왜 틀린지 모르겠음
-
잇올에서 vpn뚫고 실시간으로 봐야겠다 이걸 어떻게 참음
-
메가 환급 3모 1
N수는 나중ㅈ에 입력해도 되나요 6모전에 할 생각인데
-
현역 3모 성적 3
에휴 ㅋㅋㅋ
-
제발 좀
-
저메추좀
-
왤캐 고맙죠 이 말 하나에 많은 것이 담겨져있는거 같음요 주마등처럼 스윽...
-
하이라이트만 볼까
-
구글 AI studio가 지피티보다 나은 거 같기도 0
흠...
-
웹툰임
-
핑프를 도와주세요
-
거짓말임
-
진짜임
-
이제 서울로 간다 11
대구 바이바이

캄사요~화학에선 많이 쓰는데
엇,,, 아쉽게도 전 물지여서,,, 그것도 조선시대에,,,,,ㅎㅎㅎ
앗 누가 먼저 썼네요
꺼삐탄 리는 아는데
공수1에서 꽤 나오기도 합니다 로그꼴에서 쓰는케이스는 첨보네요 ㄷㄷ
고1때는 가비가 사람이름인줄 알았는데 ㅋㅋㅋ
오호,,,,,,
옛날에 시발점 보면서 가비의 리 얘기가 나온 적이 있는데 수상이었나.. 이렇게도 적용이 되는 거였네요
흠 가능하긴 하지만 흔한 경우는 아니니 꼭 알아야 한다는 아닙니다 :)