[수학] '가비의 리' 이걸 안다고?
게시글 주소: https://orbi.kr/00071340870
안녕하세요
오르비by매시브 수학강사
이대은입니다.
오늘은
수능출제과목에 들어있는 내용은 아니지만
기출문제에 간혹 사용할 수 있는 문제가 있어서
재미삼아 보라고 들고왔습니다.
주제는
가비의 리
입니다.
솔직히
몰라도 됩니다.
당연한 이야기지만
고등교육과정을 넘어가는 풀이가
훨씬 빠르면 출제할 수 없으니까요.
그래서 근사가 사라졌,,
그럼 시작하겠습니다!
시작 전에 좋아요, 팔로우 한 번씩 해주시면 감사하겠습니다.
1. '가비의 리'란?
공식부터 보여드리면
입니다.
자세한 식에 대한 설명은 생략하고
이렇게 뜬금없는 가비의 리가 문제에 어떻게 적용되는지
한 번 봅시다!
2. 사용할 수 있는 당위성은 식의 형태
제가 적는 칼럼의 공통된 말이지만
많은 수학적 도구를 알더라도 결국 사용하지 못하면 아무 의미가 없습니다.
수능에 출제가 될 가능성이
높지 않다고 생각되지만
그래도 배우는 김에 언제 쓰이는 지 알면 좋으니까
설명해보겠습니다.
문제에 어떻게 적용되는 지 예시를 통해 보여드릴게요.
문제를 읽고
어떻게 가비의 리를 적용할 수 있을까
를 생각해보세요!
제가 수업 때 매일 강조하는 말이 있습니다.
수학을 잘하기 위해 필요한 1번은 의심하고 집착하는 태도이다.
가비의 리 식을 자세히 보시면
분수끼리 등호관계가 성립하는 경우입니다.
그리고 예시로 든 문제의 조건을 보시면
식의 형태가 유사한 게 보이시죠?
게다가 왼쪽 두 식의 분자끼리의 합이
가장 오른쪽 식의 분자와 같다는 걸 근거로
왼쪽 두 개의 분모끼리의 합이 3이라는 관계식을 이용하면
최종값이 등장하는 관계식이 생김을 알 수 있습니다.
이후의 풀이과정은 당연히 아시겠죠?
이제 좀 가비의 리를 이용한 풀이가 보이는 학생들은
살짝 더 어려운 아래의 문제에서도
가비의 리 풀이를 떠올릴 수 있을 겁니다!
밑변환공식을 이용하면
왼쪽 세 식의 분모끼리의 합이 맨 오른쪽 분모와 같다는 게 보이시죠?
그럼 당연하게도 답은
2, 5, 10의 곱인 100이 됨을 손 안 대고 풀 수 있습니다!
오늘 글은 여기까지입니다.
지금까지 적었던 글과 다르게
가볍게 읽어주시면 될 글입니다.
세상엔 다양한 풀이가 있고
언제나 더 많이 아는 것은 나쁠 게 없습니다.
다만
하나도 제대로 알지 못하고 다양함만 추구하는 것은 상당히 문제다!
라는 것을 잊지마세요. :D
그럼 다음에 또 다른 흥미로운 글로 돌아올게요!
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
또는
이대은T연구실 번호
01080719636 (선 문자 후 통화가능)
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다른책들이랑 촉감이 다르네 막 몸 비비고 싶은 그런 느낌
-
3모 국어90 수학84로 1 겨우 넘긴정돈데 영어는 4 탐구는 생윤사문으로 4 1...
-
슈퍼스타는 2
까와 까를 미치게 한다
-
거의 일본 자민당급 되어 버림 그니까 국짐아 계엄하지 말지 그랬냐 서부경남에서...
-
고소하겠습니다. 2
야
-
나도 이 뱃지는 분캠인데
-
맞팔구 조금만 열심히 하면 은테까진 쉬움 금테는 레전드 뻘글을 몇개 쓰거나 칼럼을...
-
제대로 써본적이 없네
-
'2026 BABY EDITION'
-
크로녹스 지1 0
우주 파트 약해서 우주편만 사려고하는데 괜찮아요? 거의 2년만에 해서 감이 안 잡히네여
-
저 아직 맞팔구해본적 없는듯.. .
-
피자 P사이즈 = 창렬임
-
맨날 보는 사람들 밖에 없는데 아 그냥 부계 하나씩 파주세요
-
밖에 돌아다니는 커플들 아니 주변 친구들만 봐도 그저그런 얼굴이나 솔직히 조금...
-
관성으로 제가 넘어졌어요 백팩메고있었는데 넘어질 때 대가리 안 깨진게 천만다행
-
병신팀
-
덕에 목감기 심했던거 3일만에 나았음요 ㅎㅎ 아 물론 코감기로 번져서 고생했지만...
-
이거보고 영어 칼럼 쓰기 시작했다
-
휫자 먹고싶당 3
배고파
-
볼텍스나 제대로 만들것이지 왜 쎈을 쳐만드는거임 ㅅㅂㅋㅋㅋ
-
치즈 안 좋아함 5
느끼해서가 아니고 먹으면 배 아픔 몸도 가려운 느낌
-
라이브 6
일본인 친구가 틱톡라이브 참여해달래서 핸는데 시청자가 넘많아서 빤스런쳐버림.. 1대...
-
지구 기출 0
지구 기출
-
정보) 1년 전 총선에서 국힘 52% 받음
-
툭툭 친게 념글가고 나름 신경쓴게 묻히고 기준이 뭐나노
-
한 조각 먹고 30초 더 돌림 맛은 있는데 양이 적은듯
-
미분파트 가형부터 21 30번급만 쭉 풀었는데 이게 젤 오래 걸림... 계산이 ㅈㄴ많네
-
대학교 과학에 타임어택이 어딨음 대학 수학에 미적 킬러 푸는 능력은 전혀 필요없음
-
네
-
올오카 요번주에 완강 예정입니다 다음주부터 월 TIM 화 허슬 수 복습 목 TIM...
-
청콤과 버건디엔 사랑이 있다.. 와 개이뿌
-
못생긴 게 죄라면 무엇으로 갚을까요,,,,,
-
경제학과 간다는 놈이 할말은 아닌거 같다만
-
살개쪗다 0
비상
-
여기 너무 재밌어 쿰척쿰척 으훙~~(육수 삐질삐질) 파오운 형성
-
"민주당 헌재 판단에 승복하지 않겠다" 어케 생각함? 0
지들 입맛에 안 맞으면 물리적 내란 일으키겠다는데
-
나 국어 폼미 2
3덮 98 3모 98 테리듬 평균 98 허슬 평균 95 국어저능러 성장 뭐지
-
또과제야 2
아아아ㅏ아ㅏ악
-
야식 묵을까 7
머먹지
-
존슨피자 입갤
-
패로인 봐야지 3
이 애니 엔딩곡 때매 반했어요
-
개이쁘자넝
-
다 초반페이지? 걍 개념문젠가
-
작수 확통 22틀 96점이었습니다 앵간한 시험에서 하방이 88-92점인것 같습니다...
-
루비쨩! 하잇~ 17
나니나 스키~?
-
벚꽃 안 펴서 좀 감 없네요
-
하 쭈왑쭈오ㅓㅂ
-
공지도 안보이네 다음주부터 맞음...? 이제 이걸 못듣다니.... 브크나 시켜야겠다

캄사요~화학에선 많이 쓰는데
엇,,, 아쉽게도 전 물지여서,,, 그것도 조선시대에,,,,,ㅎㅎㅎ
앗 누가 먼저 썼네요
꺼삐탄 리는 아는데
공수1에서 꽤 나오기도 합니다 로그꼴에서 쓰는케이스는 첨보네요 ㄷㄷ
고1때는 가비가 사람이름인줄 알았는데 ㅋㅋㅋ
오호,,,,,,
옛날에 시발점 보면서 가비의 리 얘기가 나온 적이 있는데 수상이었나.. 이렇게도 적용이 되는 거였네요
흠 가능하긴 하지만 흔한 경우는 아니니 꼭 알아야 한다는 아닙니다 :)