미적 이 정도면 난이도 어느정도임?
게시글 주소: https://orbi.kr/00071234738

김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대체 어느정도까지 심해야..
-
웨 몷라?
-
고양이가 할큄 3
팍씨
-
수특 한권이 전부임 놀랍게도
-
큐브상담에소 공통하고 미적 하라고하셔서 그러고있는데 미적 안하니까 불안해요
-
1에서 10까지
-
유튜브에도 있네 ㅋㅋㅋㅋㅋ 이때 나몰라패밀리 감성 지금 보니까 못 견디겠노 ㅋㅋㅋ
-
내가 미각이 마비된건 아닐텐데 너무 심했다...
-
영어기출필수론 28
영어는 기출만 보면 된다고 생각함 교육청도 필요없음 평가원만 7개년 기출만 계속...
-
공간벡터는 살짝 머리아프네 벡터 자체가 아직 어색해서 그런가
-
다음닉추천받음 16
생각해본거 저능강해린 1.0 지망생 1.0 강해린 08
-
실력은 오르는데 0
속도가 떨어지는중ㅋㅋ 공부란 어렵구나..
-
출기 출기능수 예전 네임드
-
막 이런거 수2 생기부에 넣어도 되나 그리고 넣을수 있나..?(야한거아님)
-
국어 정확히는 기출만 보면 안되고 기출 마르고닳도록 보는건 효과가 적다 반복은...
-
가형 킬러 21번 30번 이런건 아예 걸러도됨
-
내가그럼..
-
다른 사람 같음
-
모두들 비켜라 크아악
-
아니국민연금생각하면딱히부럽지가않아
-
미적분 상담 7
1까지는 솔직히 절대 쉽지 않아서 현실적으로 수능까지 미적 2까지 열심히 해보는게...
-
지갑 안 갖고 나와서 어쩌지 하고 있었는데... 나 05년생 새내긴데...
-
사실 제가 예상해본거임 생윤 120019명 사문 148762명 물1 34028명...
-
난뭐가좋은문제인지모름 안목이없음
-
저나이때로돌아가면상산고정문개박살내고홍성대전이사장님악수쌉가능인데
-
우리 오르비 살아잇네요
-
아이고 아이고
-
흐음 집에서 라면 끓여먹는게 나았으려나
-
귀여운 반팔티 0
추천해주세요!
-
도플러 효과는 파원의 속력이 파동의 속력보다 작을 때만 발생하는 물리적 현상입니다....
-
수시충인데 메디컬에 미련을 못버리겠네요.. 솔직히 작수 치고 더해도 안되겠다...
-
기만중에서 5
노베기만이 제일 긁혀요 아 오르비 노베 수준 더럽네 높네
-
올해는 4규s1 vs 빅포텐s1 뭐가 더 어렵나요? 0
작년엔 4규가 더 어려웠다는 말이 많던데 올해는 어떤가요? 그냥 비슷비슷한감
-
자전거타기 6
오랜만에 탔더니 힘들어서 포카리 500ml 순삭
-
그게 내 운명인 거시다...
-
국수(탐) 중에 추천 부탁드립니당
-
다음주부터 빡공할거야!
-
노베라서 울었어요... 풀이도 저능아 풀이라서 양해부탁드려요...
-
공부 의지 약하면 잠깐이라도 잇올 다니는 게 나을까요? 2
너무 비싸서 못 다니고 있는데 2~3달 정도라도 짧게 다녀볼까 고민 중인데 괜찮을까요?
-
절대 한끼에 다 못 먹는데
-
좀 많이 썻네
-
진짜 어쩔거임요
-
댓 개수로 증명해드림
-
얘가 제일 복병이네 얘만 뚫으면 성적 오를거같은데ㅠ
-
공부해야해
-
진짜로 그런 이미지가 되버림 비호감이 느껴짐 뭘해야되나요
-
여기서 다들 개혁신당 뽑는다고 하는데 오히려 표 분산돼서 민주당이 뽑힐 거 같음..
-
비호감이라는 나쁜말은 ㄴㄴㄴ
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.