미적분러라면 이 정도는
게시글 주소: https://orbi.kr/00070627172
저번 수능 20번 문제 기억하시나요.
딱히 해석할 필요 없이 그냥 대입 잘 하면 풀리는 문제였습니다.
하지만 그 문제에
기하적인 해석을 곁들여서 이해할 수 있으면 좋을 것 같아요.
그런 느낌의 해석이 이전 수능에 나오기도 했구요. (2022수능 30번인데, 밑에서 보여드릴게요.)
일단 작수 20번 문제 읽어보겠습니다.
그려보면,
이런 상황이네요.
다음 부분 보겠습니다.
일단 x>k 인 부분은 그냥 알려줬어요. 그럼 궁금한 건 x<k 부분이죠.
일단 얘를 통해 x<k인 부분의 정보를 알 수 있다고 느껴야 합니다.
함수가 막 합성돼있다고 쫄 필요 없어요. 차근차근 보면 됩니다.
일단 우리가 f(x)에 대해 아는 게 x>k니까
k보다 큰 x를 저기에 대입한다고 생각해볼게요.
x>k일 때,
f(x)는 0 ~ k 의 함숫값을 가집니다.
즉...
0 ~ k 의 어떤 수를 다시 f(x)에 넣었을 때의 얘기를 하는 중인겁니다.
그러니까 식을 통해 이 노란색 영역에서 f(x)가 어떻게 생겨먹었는지를 알 수 있는거죠.
이제 기하적인 해석을 시작해보겠습니다.
우선 식을 변형해줍니다.
아까도 말했지만 x>k에서만 관찰해줄 겁니다. 그 뜻은,
우변에 결과물은 k보다 큰 값이 나온다는거네요.
그나저나 이 식 약간 역함수가 연상되지 않나요?
잘 안 보인다면
이렇게 g(x)를 정의하고 다시 볼게요.
즉
밑에꺼 보면 확실히 보이죠.
f(x)와 f(x) /3이 역함수 관계에 있다는 건,
f(x)를 y=x에 대해 대칭시킨 뒤에 3배를 하면 다시 f(x)가 나온다
는 뜻입니다.
여기가 조금 어렵죠? 지금 생각할 게 좀 많아요.
제가 가독성을 위해 범위를 빼고 러프하게 말했지만, 범위도 고려해야 해요.
냅다 f(x)와 f(x)/3가 역함수인건 아니니까요.
잠시 멈춰서 생각을 하다가 넘어가보세요.
여기가 핵심입니다.
충분히 고민해보셨나요? 이제 같이 보겠습니다
이게 우리가 아는 f(x)구요,
x>k 구간의 f(x)를 y=x에 대해 대칭시켜주면
이렇게 됩니다. 이제 여기에 3배를 해주면
모든 함숫값이 3배가 됩니다.
지금 나온 연두색이 바로 0~k 구간의 f(x)에요.
f(x)의 x>k 구간과,
f(x)/3 함수의 0<x<k 구간이
역함수로 대응되는 구간입니다.
이제 남은 건 계산입니다.
k가 뭐였냐면
얘였습니다. 조금 정리해서,
이걸 뽑아낼 수 있겠죠.
문제에서 물어본거랑 비슷하게 생겼네요.
양변을 세제곱해주면 문제에서 물어본 복잡한 저거가
실은 얘였다는 걸 알 수 있겠죠.
지금 x자리에다가
얘 넣으면 함숫값 뭔지가 궁금한거에요.
이제 그림으로 돌아가볼게요.
일단 저기가 12인게 보여야 해요. 왜 12냐면
얘를 뒤집어준거니까요.
x-3=9, 즉 x=12
근데 구해야하는 건 12가 아니죠
그거 3배해줘야 합니다. 뒤집고 3배라고 했으니까요.
답은 36입니다.
저는 사실 문제를 처음 봤을 때 딱 이렇게 풀었습니다.
그냥 대입 몇 번 하면 나온다는 건 다른 분들한테 듣고 나서야 알았어요.
조금 허망했던 기억이 있네요..
그나저나 식을 이렇게 인식하는 건 종종 쓰이죠. 특히 미적분러라면 더 그럴 겁니다.
중요한 건 f(x)를 기준으로 서술하는 것입니다.
"f(x)를 뒤집고 3배하면 다시 f(x)가 나온다!" 처럼
f(x) 기준으로 서술해야 안 헷갈려요.
관련 문제 하나 던져드리고 글을 마치겠습니다.
심심하면 풀어보세요
(출처: 2021 시행 대수능 미적분 30번)
그냥 계산하지 마시고, 제가 보여드린 것처럼
이 부분을 기하적으로 인식하면서 해보세요.
더 좋은 글로 또 찾아뵙겠습니다.
좋아요 눌러주고 가주세요 ㅎㅎ
#무민
0 XDK (+10,000)
-
10,000
-
[속보] 트럼프, 상호관세 발표…韓 25% 日 24% 中 34% 부과 6
미국 정부가 한국에서 생산돼 미국으로 수입되는 제품에 25%의 상호관세를 부과한다고...
-
내가 만든 내 세상이다
-
69수 원점수 92 100 96
-
얼버기 4
안농
-
오르비 안녕히주무세요 10
해뜨고 봐요
-
똥먹기 3
미소녀 똥 우걱우걱
-
정신 차리고 밀린 과제도 끝내고 취약 파트 공부도 시작하고 수능과 운동까지 도전한다
-
굿밤 ㅇㅈ 0
좆자기학 과제 다 끝내고 잔당 이해 아예 안되서 손으로 책에 있는 내용 그대로...
-
이젠 글이 안올라와
-
수학 N제 3
높3정도가 풀기 좋은 N제 추천해주세요 지인선 N제 풀만한가요
-
기출 할때가 아닌가
-
안녕히 주무세 3
지 말고 밤새야지 어디가노
-
내일 하겟읍니다
-
비수도권 평준화 일반고 내신 2.9인데 학종으로 컴공이나 전자공학과 노린다면...
-
벌써 3시 10
-
괜찮겠지 잘자요 다들~
-
수면패턴 ㅈ됨 0
학교에서 풀수면 때려야겠다 스발;;
-
심사 꼬여서 매사에 불만 많고 말 삐딱하게 하는 사람들 너무 피곤함.. 오르비...
-
비교 2
ㅅㅂ 이제 와서 후회되네 님들은 어디가너
-
존나 우울하네 ㅅㅂ 재수끝나자마자 먹어야하나 아님 지금부터 먹어야 하나 착잡하다그냥
-
이날개예쁨... 12
-
피글린이 내 다이아 갑옷 뺏어감 ㅠ
-
잘지내니 4
잘하고 있겠지 그래.. 보고 싶다 그냥..
-
너로 지브리 사진을 만들엇서
-
나는 짜피 둘 다 포함될텐데
-
일루와잇
-
요즘 꽂힘
-
확통질문 5
이거 이렇게 풀어도 괜찮아요?
-
가야만 해
-
갈 곳이 없다
-
과외쌤이 오르비언이면 18
성적내기해서 이기면 덕코 삥뜯기 했을거 같아요
-
ㅋㅋ....;;;;
-
응응
-
지문 하나 풀면 모든 힘이 다 빠져서 하루에 2개는 도저히 못 풀겟음심지어 하나...
-
꿈나라 2
-
그 웃음도나에겐커다란 의미
-
사실 난 남들이 힘들어하는걸 하고 잇나봄
-
대 - 성 균 관 대 킹고킹고에스카라
-
훠궈먹고싶다 18
-
트러스를 풀다 어싸를 풀다
-
이거들어바 6
굿
-
평가원/교육청 기출문제를 이용한 스토리텔링 전글에서 영감을 얻었다
-
대체 무슨 매력이 있는걸까
-
누구 만나는거 무서움
-
국어 비문학 공부할 때 시간이 얼마나 걸리든 그냥 이해될 때 까지 계속 읽으면 되나요?
-
배성민쌤 말고도 알려주는 쌤 계심?
-
사람이 어떻게 될까제가 실험해봣음
-
나 연애하는중 1
나랑
-
열반햄 어디가심

1빠항상 잘 보고 있어요 좋은 글 감사합니다
미적분안했는데 이렇게 풀엇으면 ㅁㅌㅊ인가요
칭찬좀

미적 안했는데도 한거면 해석 능력이랑 역함수에 대한 이해가 진짜 뛰어나시네요수학상하 때도 열심히 하신듯요
저는 그래서 24수능 28하고 비슷하다고 생각하면서 풀었었네요..(근데 틀림 ㅜㅜ)

맞아요 확대축소는 241128이랑 똑같죠우악 토나와

오랜만이네요 약연님오랜만이에요 :)
칼럼 잘 읽고 갑니다..! (0,k)에서 그냥 적절한 임의의 함수가 있겠지..하고 넘어갔는데 이런 방법으로 구해볼 수도 있었군요!
선생님 덕에 새롭게 배워가고 갑니다

답을 낼 때는 대입해서 풀었지만 현장에서 20번 처음 봤을 때가장 먼저 시도했었던 방법이네요 ㅋㅋ
확대축소 안 하고 바로 치환 때려도 나오는 거 같아유.
차피 f(x) (k<x) 는 일대일 대응이니깐 바로 역함수로
저도 역함수로 풀었는데 10분 잡아먹은것 같네요 ㅋㅋㅜ
ㄷㄷ..
저렇게 풀고 으쓱하다가
대입 풀이보고...ㅋㅋ
아니 요즘 수학 진짜 어렵네 ㅋㅋㅋㅋ
시간 ㅈㄴ 박아서 역함수로 풀었는데 대입 딸깍의 허망함은
나랑 똑같이 했네
저 방식으로 풀려하면서 k값을 정리할 때쯤 종이 쳐서 못풀었습니다 ㅠㅠ 5분만 더 줬으면 풀었을텐데
저도 막히고 나서 이방식으로 풀었는데 ㅋㅋ
풀이보고 허탈했음ㅋㅋㅋㅋ