Residual Finiteness
게시글 주소: https://orbi.kr/00069377875
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6 7번 제일쉬웠음 자기생각말하기임 1 2번 물리문제 자유낙하실험 시간측정하면서...
-
물론 대학 떨어지면 병약해질 예정임
-
문제 형식이나 풀이 틀린 점 있으면 말해주세요
-
다른 건 암기가 되는데 역사만더럽게안됨뇨..
-
좀 쉬웠던거 같긴한디
-
하나도 후회 안 됨
-
어제 인원은 이전 글에
-
Canonical 때문에 미치겠네
-
근데 외모는 왜 평균 저 밑
-
생윤 지구 지엽 2
뭐가 더 많아요?
-
진짜다메닝겐이네 6
왜살지
-
난 그래도 뭐든 평균 이상은 되니까 만족하고 살래 13
❤️❤️ 남과 나를 비교하지 말고 나를 사랑해주기 ❤️❤️
-
한완수 기하하면 2
기출 문제집 살 필요가 없네 ㅋㅋ 걍 기출문제집 문제수랑 별 차이가 없음 그...
-
서성한 어문, 사학과 철학과 등 낮과 vs 이대 상경 어디가 낫다고 보시나요...
-
약을 안먹었구나
-
조용히 손들어볼까?
-
운전면허 2
운전면허 따는데 얼마나 걸리나여
-
올해 서연고 카이스트 면접 다 가봤는데 저는 포스텍이 제일 어렵더군요…
-
취미를 만드는 계기가 됨 강제로 혼자있는 시간이 전보다 많아지니까 남들이 뭘...
-
ㄹㅇ..
-
다들 시간 남기긴 했더라..
-
ㅇㅇ
-
냥대논술끝 0
ㅜㅜ붙게해줘
-
키가작은남성은 또다른 키작남의 자존감과 정신건강을 지켜주기 때문에 없어설 안될...
-
어짜피 정시랑 내신 라인 비슷하게 나와서 면접 가는곳 정시 낙지 6컨 뜨는 곳이라...
-
어떻게 올리는 거죠? 안되나요?
-
설의나 설공 특정과 노리려는 극상위권에게 강제로 물리나 화학을 하도록 유도함으로써...
-
아러 슌 샹치 페이즈 미싱 줄여서 아슌상페미 ㄷㄷㄷㄷ
-
고통 어떤가요 6
고경제 대신으로 통계 쓰는거 ㅇㄸㅇ?
-
학생 목소리 못없애죠..??
-
냥대 상경 논술진짜 1번에서 모든걸 다 완벽하게 햇는데 최대 구할때 극대인줄 알고...
-
못부르긴함
-
수시 납치 질문 1
충원 합격으로 수시 붙어도 정시 못쓰나요?
-
화2 손은정 0
화2 개념땔려하는데 뭘 들어야하나요? 26버전 나오면 들으려하는데 수능완성 수능특강...
-
ㅈㄱㄴ
-
경북논 자연2 8
어땠음? 전 1번 다풀고 2번 손도 못댐.. 경북 경북논
-
이제내년입시를
-
1컷 92면 미적런 해서 무조건 96 100점 맞아야 한다는건데 그러면 미적런 한 이유가..
-
의대 증원에 수능 한두과목 4등급 맞은 학생도 의대생 될수도 하는 뉴스를 봤는데 8
증원 때문일까..
-
깊티 뿌림 3
지구세지 vs 한지세지 지구는 기단~우주 개념 끝 한지세지 쌩노베...
-
반반 2
-
존나 어렵네
-
ㅇㅇ
-
논술 끝 10
이제 진짜 다 끝났다..!
-
모기 잡음 6
이날씨에 모기가 있네
-
다 맞아야 하는건가요?
-
냥대 상경 논술진짜 1번에서 모든걸 다 완벽하게 햇는데 최대 구할때 극대인줄 알고...
-
수시- 몸갈아넣으면 ㅈ반고 기준 등급 나옴 근데 몸을 갈아넣는게 포인트임 3시간...
-
고1국어 3
고1모고보면 2정도뜹니다 정시준비하려는데 뭘 하면 좋을가요 인강이나 문제집 추천 부탁드립니다!
우익수