[지구과학1] 도플러 효과 관련 스킬 소개2
게시글 주소: https://orbi.kr/00068097495
안녕하세요! 지구과학 가르치는 강사 안성진입니다.
지난 글(https://orbi.kr/00068097094) 에 소개한 스킬을 이용해 더 많은 문제를 풀어보겠습니다.
(1) 2024 수능 19번
Q1. 기준 파장 λ0의 값은?
A.행성의 공전 궤도로 중심별의 파장 변화 양상 파악하기
(1) 중심별의 공전 방향 구하기
행성이 A위치에 있을 때, 중심별은 시선 속도 크기가 최댓값을 나타내는 위치에 있으므로, 적색 편이 최대 혹은
청색 편이 최대를 나타냅니다. 그런데, 중심별의 파장이 비교적 짧게 나타나고 있는 상황이니,
청색 편이 최대를 나타내고 있을 것입니다.
이를 통해 중심별과 행성은 시계 방향으로 공전하고 있음을 파악할 수 있습니다.
(2) 중심별의 파장 변화 양상 파악하기
지난 글에서 해보았던 것 처럼, 일단 시선 방향에 수직하게 스펙트럼 축을 그려줍니다.
행성의 공전 궤도가 그려져 있는 상황이므로, 시선 속도의 부호가 중심별로 판단할 때와는 반대임에 유의합시다.
행성의 위치에 따른 중심별의 스펙트럼 위치가 바로 파악되었습니다. 문제의 조건에 따르면,
행성이 A에 있을 때 중심별 흡수선의 관측 파장이 499.990, B에 있을 때 500.005 이므로, 이를 써줍시다.
그리고, 행성의 공전 궤도 반지름을 1로 잡고, 위 그림 기준 A,B,C의 y 좌표 값 크기의 비를 비교합시다.
그리고 그 비는 아래와 같이 파장 변화 크기의 비와 같습니다.
그렇다면, 고유파장은 499.990과 500.005를 2:1로 내분하는 지점임을 직관적으로 파악이 가능합니다.
따라서 고유파장은 500입니다.
Q2. ㉠의 값은 499.995보다 작은가?
A. 위 그림을 그렸다면, 답이 그냥 나옵니다.
그린 그림에서, 499.995의 위치를 표현하면 아래 그림과 같습니다.
499.995는 500과 499.990의 딱 가운데에 해당하므로, 행성이 C에 위치할 때의 파장은 그보다는 짧음을
바로 그림을 통해 판단이 가능합니다. 이 스킬의 좋은 점 중 하나입니다. 문제에 그려진 그림을 활용할 수 있다는 것이죠.
(2) 2019 9월 모평 18번
Q1. (가)에서 지구로부터 중심별까지의 거리는 T2일 때가 T3일 때보다 가까운가?
A. 시선 속도 그래프를 이용해 중심별 공전 궤도 연상하기
위에서 보았던 애니메이션을 상기합시다.
그리고, (가) 그림 옆에 중심별의 공전궤도를 그려봅시다. 숙달되면 머리에서 연상하실 수도 있을겁니다.
일단, 시선 속도 축과 수직하게 시선 방향을 설정합니다. 왼쪽을 향할지, 오른쪽을 향할지는 상관없습니다.
상황에 맞춰서 공전 방향을 설정해주면 되거든요. 저는 오른쪽을 향하게 그려보겠습니다.
얼추 시선 속도의 변화폭과 맞추어 공전 궤도를 그립니다.
그리고, 위쪽 궤도를 돌 때 시선 속도가 (+)여야 하므로, 공전 방향은 시계 방향으로 그려주면 되겠네요.
시선 속도 값에 맞춰서 중심별의 y축 좌표(위 그림 기준) 값을 설정해주면 됩니다.
그럼 자연스럽게 아래와 같이 됩니다.
조금만 연습하시면 머리에서도 쉽게 그려집니다. 그럼 T2일 때가 T3일 때보다 가깝네요.
(3) 2024 EBS 파이널 실전 모의고사
Q1. 식현상은 (나)~(다) 기간에 나타나는가?
A. 흡수선의 파장 변화 통해 중심별 공전 궤도 연상하기
문제 조건에 따라 해당 자료는 중심별이 공통 질량 중심을 원궤도로 '1회 공전'하는 동안 '일정한 시간 간격'으로
관측한 것입니다.
그런데, 스펙트럼이 총 4개가 제시되었고, (라)는 (가)와 동일한 위상을 나타내고 있으므로,
이는 중심별이 공전 궤도를 120도 공전할 때마다 한번씩 스펙트럼을 나타낸 것입니다.
그런데, 만약 중심별이 관측자와 가장 가까운 위치에 있을 때부터 스펙트럼을 나타낸 것이라면, 아래와 같은 스타일의 스펙트럼이 관측되어야합니다.
그런데 그렇지 않다는건, 뭔가 애매한 위치에서부터 관측을 시작했다는 의미겠죠?
자료를 통해 파악해봅시다.
일단 스펙트럼 축과 수직하게 시선 방향을 설정합니다. 위쪽을 향하든 아래쪽을 향하든 상관없으나,
위쪽을 향하게 해보겠습니다. 그럼 오른쪽이 파장이 길어지는 방향이므로, 중심별이 반시계 방향으로 돌게끔 설정해줘야합니다.
그리고, 흡수선의 위치에 알맞게 중심별이 120도 간격으로 들어가기 위해서는 아래 그림과 같이 그려져야 함을
조금 생각하면 알 수 있습니다.
(가)와 (나) 같이 스펙트럼 파장이 같은 경우에는, 공전 방향을 잘 관찰하여 선후 관계를 결정해야함에 유의하세요.
그럼, 식현상은 중심별이 관찰자와 가장 멀어질 무렵에 발생함을 고려할 때, 식현상이 나타나는 구간은 (나)~(다)가 아니라, (다)~(가) 입니다.
Q2. 흡수선의 원래 파장은 [λ-(Δλ/3)]nm 인가?
A. 일단 고유 파장의 위치를 찾아야합니다.
문제에 그려진 λ는 고유 파장을 의미하지 않음에 유의하세요.
스킬을 적용해보면, 고유파장은 위 그림의 ㉠과 ㉡ 사이를 1:2로 내분하는 지점에 위치함을 알 수 있습니다.
따라서 고유 파장은 ㉠으로부터 (2Δλ/3) 만큼 긴 위치에서 나타남을 알 수 있구요.
이를 문제의 'λ' 를 사용하여 표현해보면,
λ로부터 [Δλ-(2Δλ/3)] 만큼 짧은 위치에서 나타나는거니까, [λ-(Δλ/3)] 로 표현이 가능합니다.
따라서 고유 파장은 [λ-(Δλ/3)]nm 입니다.
Q3. (가) 이후 관측 시간 간격을 1/2로 줄이면 관측되는 파장의 최솟값은 [λ-(5Δλ/3)]nm 인가?
A. 관측 시간 간격을 1/2로 줄이면, 중심별이 60도를 돌 때마다 한번씩 스펙트럼을 나타내는 것입니다. 그렇다면
아래와 같이 나타날겁니다.
위 그림의 X 위치에서 최솟값이 나타날 것임을 바로 파악할 수 있지요.
그럼, 고유 파장인 [λ-(Δλ/3)] 으로부터, 2x(2Δλ/3) 만큼 짧은 위치에서 파장이 나타날 것이므로,
[λ-(5Δλ/3)]nm 입니다.
이상 최대한 다양한 유형의 문제를 풀어보며 스킬의 유용성을 살펴보았습니다.
도움이 되셨다면 댓글과 추천 부탁드리겠습니다. 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
영어 0
결국 수능완성 한챕터 풀었어 07 빈칸 4/5 덜읽고 답찍어서 하나 나감 분발하자
-
생윤공부 2
135선지중 12개틀렸음
-
오늘 쌤이 sec(x)를 실수로 sex로 판서하셧다가 급히 지우셧단말이지;; 진짜...
-
나도 무물.. 7
보 해줘잉
-
ㅈㄱㄴ ㅠㅠ
-
매월승리 0
2~8호 순서대로 푸는거보다 4~8호 다 풀고 2~3호 푸는게 낫겠죠?
-
하도 무서워보이길래 ㅌㅌ 했는데
-
24수능 때 수학,과탐을 매우 잘봤고 국어만 심각하게 망쳤습니다. 그냥 수능...
-
무슨 기적이였나 권용기 거였나
-
지들이 뭐라도 되는줄아는 영포티들이 희희덕 거리면서 일반인 조리돌림하고 선민의식...
-
무보 14
무엇이든 물어보삼
-
대체 어떤 약국임?? 진짜 궁금
-
전여친이 6
전여친이 양다리 + 환승으로 저랑 헤어졌단말여요 근데 얼마전에 하이라이트 보니까...
-
무물? 2
보
-
으알라ㅏ아으으ㅏ아능으ㅏㄹ
-
삼각함수에서 파생된(?) 또 다른 친구인가요? 아니면 삼각함수 미분한건가요?? 제가...
-
샌드위치 26
최고의 게이밍 푸드
-
얘 왜케 큼 1
ㄷㄷ
-
ㅇㅇ
-
마음이 평화로워져서 그런 듯 방학이랑 2학기 동안 열심히 해서 2학기 중간 본 후나...
-
오운완 2일차 3
완료
-
백날 저거 해봐야 개돼지 국민들 매일 1000명씩 죽으라고 저주하는 의대생들 한 트럭임
-
이거저거 다 궁금함..
-
체육대회 수학여행 학교축제 다 빠진 개찐따라 쓸게없음 ;;
-
자지 1
미
-
최적 선생님과 최여름 선생님 중에 누가 더 좋나요?
-
무물무물
-
나가ㅏㄱ가가가가
-
키도 크고 예쁜 후배라 궁금하긴 했었는데, 아마 제가 아는 과 선,후배 중에서는...
-
너무 쉬운거 같다...
-
이미지 써드림 20
모르면 패스할게요
-
나정상인같지 1
?
-
무물보 빌런 3
그게 나야 두비두밥 ^^
-
무물보 0
나도 못참지
-
뻘글이지만... 2
어렸을 때 현실 도피하기 위한 수단이 수학공부였습니다
-
무물보 0
나도 해줭
-
보지 6
마!
-
무물 3
-
무물보 9
-
무물보? 5
없겠지만 한번
-
무물 2
-
무물보 메타임? 10
ㄱㄱ
-
그냥 10 goat임 Ebs라는 고요한 바다에서 조용히 승천의 때를 기다리는 드래곤이랄까
-
저도 무물보 14
해주센여
-
무물보ㄱㄱ 49
심심해
-
나같은 애들 거르려고
-
한달 정도는 답지는 공개 안 하고 그 기간에 풀고 후기 남긴 사람 중에 선착순으로...
-
얼마나 유의미함?
-
유튜브에서 보다가 떠서 궁금해짐
좋은 글 항상 감사합니다!
늙고병들어서문제를gif로풀고싶어요
ebs저 문제 풀면서 경악했었는데 ㄷㄷ