분수함수 예제
게시글 주소: https://orbi.kr/00067613830
어떻게 푸실 건가요.
미분해서 연립하실 건가요?
그것도 나쁘지 않지만, 이렇게 해보세요
맨 아래 식이 완전제곱식이면 됩니다. 접하니까요.
a가 18이면 딱 되겠네요. 그러면 (x-4)^2 이니까요.
이 말은 b는 4라는 소립니다.
x-4의 제곱이니까요.
나머지 극점은 어디에 있을까요?
- 18/4 일겁니다.
x절편인 -1/4 과, 극점 위치인 4가
17/4 만큼 떨어져 있기 때문이죠.
항상 등간격으로 떨어져 있어야 합니다.
함수가 대칭도 아닌데 왜 그래야 하냐구요?
방금 보여드린 아이디어들이 너무 특수한 거 아니냐구요?
아래 링크를 확인해보세요. 도움이 될 겁니다!!
이 글에 좋아요는 눌러주고 가세요 ㅎㅎ
#무민
0 XDK (+2,000)
-
1,000
-
1,000
-
왠지 모르게 다들 자료글 태그에 칼럼 시동만 거시네 ㅋㅋ 0
몇에서 몇으로 올린비법 시동걸고 계시네 저도 한번 조만간 어떻게 4에서 1컷으로...
-
찬양하라 1
추앙합니다
-
옯붕이들의 순수한 등판요청으로 귀찮은 관리자는 7ㅐ추 ㅋㅋㅋ
-
빌어본다
-
특정 학원을 다녔다는 사실을 강조하는 선생님들이 많이 보이는게 신기함 ...
-
취업한 사촌형들한테 물어봤었는데 모두가 이구동성으로 뜯어말렸었음 엄마 아빠까지...
-
서울대 투과목 필수폐지후 투과목 상황 지금 화1 상황 뭔가 겹쳐보이지 않음? 아님 말고
-
고고
-
웹툰에 나오는 비싼차끌고 금수저에 예쁘거나잘생기고 옷도 고급지게입고 인테리어 잘된...
-
.
-
뻣뻣하고 불편하지 않나 청 들어가는거 <<<뻣뻣함 joat
-
천만덕 가쥬아
-
이런영광이 0
감사합니다
-
뭐 2과목 가산점 큰것도 맞는디 젤 중요한건 화1을 선택 안하는거지 메리트는...
-
오르비에는 글 안썼지만 은근히 넣어둔게 많음ㅎㅎ 영어도 추가해놨고.. 이제 업데이트...
-
컨관님 댓글 달아주세요 12
-
니트 코디 20
여장 요즘 재미붙어서
-
작년에 박목월 시인 미발표작 대량 발견됐다던데 이거 그중 하나인가
-
나군 인가경라인 자유전공학부 28명 뽑는데 올해 처음 뽑아서 데이터 없ㅇㅓ요 예비...
-
저도 덕코주세요 5
ㅈㅂㅈㅂㅈㅂ
-
2년연속 9모 1 -> 수능 3 테크 타니까 돌겠음 9모 이후로 자만해서 공부 안한...
-
알바 짤린썰 1
내가 수능끝나고 알바가 너무 하고 싶었음 대학도 이 지역으로 거고 집도 가깝고...
-
지옥에서 돌아온 부엉이와 옵붕이들의 유쾌한 폭동이 시작된다
-
컨관님 5
저도 덕코
-
마리골드 2
왜클릭
-
뭔가 체계 자체는 잡혀있는데 그걸 적절하게 써먹지를 못하겠음. ㅠ
-
컨텐트관리자님 6
덕코주세요 하와와
-
콘텐츠관리자님 5
저 귀엽다고 생각하죠?헤헤헤
-
오늘은 4곡 불럿음 25
드라이플라워 가질수없는너 마리골드 오래된노래
-
아 개웃기네 1
-
컨텐츠관리자님 댓좀 10
얘좀 귀엽지않나요 침묵은 긍정의 의미로
-
대유쾌마운틴임 ㄹㅇ
-
돌담병원 미친고래 goat
-
휴식
-
본인 옷 쇼핑 특 10
스스로의 의지와 선호로 사본건 단 한번 뿐...
-
나 좀 친절한듯 3
우울증 그 쪽지 나도 받았는데 으로서 복지제도 소개해줌
-
오르비언들 5
카와이 >.<
-
저랑 싸울사람 4
저 태권도 검은띠에 유도한달경력있음 줄넘기도 다이어트하면서 많이해봄
-
선생님은 갑자기 왠 4기가 나온다는거에요???
-
의자 앉을 떄마다 의자 폭발하는 상상이 자꾸 돼서 너무 신경쓰이고 무서워서 의자...
-
이응 발음할 때 가령 '아기' 발음한다 치면 서울 사람들은 [agi]인데 부울경...
-
컨텐츠관리자 2
모솔인가?!
-
우울감 -1
-
오버핏 맨투맨에 슬랙스 니트에 슬랙스 후드티에 슬랙스 슬랙스만 있으면 다됨뇨ㅋㅋㅋㅋ...
-
닥전인데 vs 아주대라면 어떻게 될까
-
아니면 여러명이 동일계정 쓰시는건가
-
순진한 칼럼러인데 벌점 50있는게 너무 이상해 보이잖아요
저라면 1/2를 빼고 볼 것 같네여 ㅎㅎ
이제 수학(상)에서도 합법적으로(?) 저런 문제를 낼 수 있다니 너무 좋아여 ㅎㅎ
1/2 을 뺀 이후에 어떻게 하는건가요?
그럼 극값 0 될 테니 대충 분자 중근가진다 쓰려고요
-1/2 4 1-a/2 될 건데
1-a/2=-8이므로 a=18
전 이렇게 떴어여
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
아 똑같은 풀이군요잘 푸셨습니다 ㅎㅎ
수학황 ㄱㅁ
![](https://s3.orbi.kr/data/emoticons/dangi_animated/009.gif)
캬확통 칼럼도 써주세용!
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
확통도 괜찮은 주제로 한 번 써보겠습니다 ㅎㅎ![](https://s3.orbi.kr/data/emoticons/oribi_animated/006.gif)
오 신기하네요좋은 글 정말 고맙습니다
극대 극소를 부등식과 등호 성립조건으로 이해하자.
ax+b/x²+c가 극댓값M을 갖는다(단, c는 양수)
ax+b/x²+c<=M 이 극대를 갖는 x근처에서 등호를 만족시키며 성립한다.
ax+b<=M(x²+c)가 등호를 만족시키며 성립한다
M(x²+c)-ax-b>=0에서 판별식D=0을 만족한다
극소도 마찬가지로 증명
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
부등식으로 보는 관점도 좋네요사실 고등수학 상 에서 내던 문제죠 일차/이차가 최대or최솟값을 갖는다고 문제가 나옵니다
굉장히 좋은 인사이트 인 것같기는 한데
확통 선택자는 저거 쓸 일이 없겠죠? ㅜ.ㅜ
네 ㅜ 미적분 과목에서만 쓰일 것 같습니다
그래도 좋은 칼럼 감사드립니다 :)
공통과 확통에서도 좋은 칼럼 기대할게요!!
오르비의 순기능이시네여
이거 강기원 수업때 들었던..
로컬 맥시멈 미니멈 ㅋㅋㅋ
부등식으로 표현하고 등호성립조건 체크하자 ㅋㅋㅋ
저거 뉴런에도 나오지않나
보통 점대칭×우함수는 대칭이 아닌거 맞죠??
네 그렇죠. 그런데 특별한 조건을 만족하면 둘의 곱이 점대칭이 될 수 있습니다
x=a에 대해 선대칭인 함수와
(a,0)에 대해 점대칭인 함수를 곱한다면
그 결과는 (a,0)에 대해 점대칭일겁니다.
x제곱 곱하기 x세제곱이 x5제곱으로 점대칭인것처럼요
와 강기원T내용이랑 똑같네
저는 강기원 쌤과는 아무 관련이 없는데 …
내용이 겹쳤나보네요 ㅜ ㅋㅋ
강기원쌤 부등식 관점은 극대 극소에 한정되지만 무민님 관점은 방부등식과 접선 등 다양하게 연계되어서 활용될 수 있다는 점에서 배울게 많은것 같아요 항상 감사드립니다
![](https://s3.orbi.kr/data/emoticons/oribi_animated/005.gif)
과외할 때 써먹을게요![](https://s3.orbi.kr/data/emoticons/oribi_animated/034.gif)
글 찾기 쉽게 팔로우는 어떠신가요헉
저거 왼쪽에 이차 분의 일차 함수 어떻게 그려지나여?
https://orbi.kr/00063758834
본문에 걸어둔 링크인데요, 저거 타고 들어가면 함수가 어떻개 그려지는지에 대한 자세한 내용 보실 수 있습니다.
대충 위 사진처럼 그려져요
![](https://s3.orbi.kr/data/emoticons/dangi/032.png)
이 칼럼도 너무 유익하네요 미적 선택자 아니어도 수학에 대한 시야가 넓어지는 느낌